1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
import torch
import warnings
from sys import maxsize as maxsize
import torch.onnx
# This import monkey-patches graph manipulation methods on Graph, used for the
# ONNX symbolics
import torch.onnx.utils
from functools import wraps
# Note [Edit Symbolic Files]
# EDITING THIS FILE AND SYMBOLIC_OPSET<VERSION> FILES? READ THIS FIRST!
#
# - These files is ONLY for ATen operators (e.g., operators that show up in the
# trace as aten::blah). If you need to special case a primitive operator,
# look at _run_symbolic_function
# - Parameter ordering does NOT necessarily match what is in VariableType.cpp;
# tensors are always first, then non-tensor arguments.
# - Parameter names must *exactly* match the names in VariableType.cpp, because
# dispatch is done with keyword arguments.
# - Looking for inplace ops? They're detected by the trailing underscore, and
# transparently dispatched to their non inplace versions in
# 'run_symbolic_function'. See Note [Export inplace]
#
# ----------------------------------------------------------------------------------
# A note on Tensor types
# ----------------------------------------------------------------------------------
#
# In general, we should avoid depending on the type of Tensor Values contained
# within the trace graph. However, this is sometimes unavoidable (due to ONNX
# spec requirements, etc). The TensorType object has accessors for these properties
# that return the property if it is statically known and return nullopt otherwise.
#
# In general, we should prefer to rely on the least specific information possible.
# For example, not relying on tensor properties at all is better than relying
# on the number of dimensions which is better than relying on
# concrete shapes. Doing so will make the export symbolics
# more robust to different graphs.
# ---------------------------------------------------------------------------------
# Helper functions
# ---------------------------------------------------------------------------------
# Save some builtins as locals, because we'll shadow them below
_sum = sum
def _parse_arg(value, desc):
if desc == 'none':
return value
if desc == 'v' or not _is_value(value):
return value
if value.node().mustBeNone():
return None
if value.node().kind() == 'onnx::Constant':
tval = value.node()['value']
if desc == 'i':
return int(tval)
elif desc == 'f':
return float(tval)
elif desc == 'b':
return bool(tval)
elif desc == 's':
return str(tval)
elif desc == 't':
return tval
elif desc == 'is':
return [int(v) for v in tval]
elif desc == 'fs':
return [float(v) for v in tval]
else:
raise RuntimeError("ONNX symbolic doesn't know to interpret Constant node")
elif value.node().kind() == 'prim::ListConstruct':
if desc == 'is':
for v in value.node().inputs():
if v.node().kind() != 'onnx::Constant':
raise RuntimeError("Failed to export an ONNX attribute '" + v.node().kind() +
"', since it's not constant, please try to make "
"things (e.g., kernel size) static if possible")
return [int(v.node()['value']) for v in value.node().inputs()]
else:
raise RuntimeError("ONNX symbolic doesn't know to interpret ListConstruct node")
raise RuntimeError("Unexpected node type: {}".format(value.node().kind()))
def _maybe_get_const(value, desc):
if _is_value(value) and value.node().kind() == 'onnx::Constant':
return _parse_arg(value, desc)
return value
def _maybe_get_scalar(value):
value_t = _maybe_get_const(value, 't')
if isinstance(value_t, torch.Tensor) and value_t.shape == ():
return value_t
return value
def _get_const(value, desc, arg_name):
if _is_value(value) and value.node().kind() not in ('onnx::Constant', 'prim::Constant'):
raise RuntimeError("ONNX symbolic expected a constant value of the {} argument, got `{}`".format(arg_name, value))
return _parse_arg(value, desc)
def _unpack_list(list_value):
list_node = list_value.node()
assert list_node.kind() == "prim::ListConstruct"
return list(list_node.inputs())
# Check if list_value is output from prim::ListConstruct
# This is usually called before _unpack_list to ensure the list can be unpacked.
def _is_packed_list(list_value):
return _is_value(list_value) and list_value.node().kind() == "prim::ListConstruct"
def parse_args(*arg_descriptors):
def decorator(fn):
fn._arg_descriptors = arg_descriptors
def wrapper(g, *args, **kwargs):
# some args may be optional, so the length may be smaller
assert len(arg_descriptors) >= len(args)
args = [_parse_arg(arg, arg_desc) for arg, arg_desc in zip(args, arg_descriptors)]
# only support _outputs in kwargs
assert len(kwargs) <= 1
if len(kwargs) == 1:
assert '_outputs' in kwargs
return fn(g, *args, **kwargs)
# In Python 2 functools.wraps chokes on partially applied functions, so we need this as a workaround
try:
wrapper = wraps(fn)(wrapper)
except Exception:
pass
return wrapper
return decorator
def _scalar(x):
"""Convert a scalar tensor into a Python value."""
assert x.numel() == 1
return x.item()
def _if_scalar_type_as(g, self, tensor):
"""
Convert self into the same type of tensor, as necessary.
We only support implicit casting for scalars, so we never
actually need to insert an ONNX cast operator here; just
fix up the scalar.
"""
if isinstance(self, torch._C.Value):
return self
scalar_type = tensor.type().scalarType()
if scalar_type:
ty = scalar_type.lower()
return getattr(self, ty)()
return self
def _is_none(x):
return x.node().mustBeNone()
def _is_value(x):
return isinstance(x, torch._C.Value)
def _is_tensor(x):
return x.type().isSubtypeOf(torch._C.TensorType.get())
def _is_tensor_list(x):
return isinstance(x.type(), torch._C.ListType) and isinstance(x.type().getElementType(), torch._C.TensorType)
def _unimplemented(op, msg):
warnings.warn("ONNX export failed on " + op + " because " + msg + " not supported")
def _onnx_unsupported(op_name):
raise RuntimeError('Unsupported: ONNX export of operator {}. '
'Please open a bug to request ONNX export support for the missing operator.'.format(op_name))
def _onnx_opset_unsupported(op_name, current_opset, supported_opset):
raise RuntimeError('Unsupported: ONNX export of {} in '
'opset {}. Please try opset version {}.'.format(op_name, current_opset, supported_opset))
def _onnx_opset_unsupported_detailed(op_name, current_opset, supported_opset, reason):
raise RuntimeError('Unsupported: ONNX export of {} in '
'opset {}. {}. Please try opset version {}.'.format(op_name, current_opset, reason, supported_opset))
def _block_list_in_opset(name):
def symbolic_fn(*args, **kwargs):
raise RuntimeError("ONNX export failed on {}, which is not implemented for opset {}. "
"Try exporting with other opset versions."
.format(name, _export_onnx_opset_version))
return symbolic_fn
def _try_get_scalar_type(*args):
for arg in args:
try:
return arg.type().scalarType()
except RuntimeError:
pass
return None
def _slice_helper(g, input, axes, starts, ends, steps=None, dynamic_slice=False):
if _export_onnx_opset_version <= 9:
from torch.onnx.symbolic_opset9 import _slice
return _slice(g, input, axes, starts, ends)
else:
from torch.onnx.symbolic_opset10 import _slice
return _slice(g, input, axes, starts, ends, steps, dynamic_slice)
def _is_fp(value):
if value:
if isinstance(value, torch.Tensor):
type = value.dtype
return (type == 'torch.float32') or (type == 'torch.float64') or (type == 'torch.float16')
else:
type = value.type().scalarType()
return (type == 'Float') or (type == 'Double') or (type == 'Half')
return False
def _sort_helper(g, input, dim, decending=True, out=None):
if out is not None:
_unimplemented("Sort", "Out parameter is not supported")
shape_ = g.op("Shape", input)
dim_size_ = g.op("Gather", shape_, g.op("Constant", value_t=torch.tensor([dim], dtype=torch.int64)))
if _export_onnx_opset_version <= 10:
if not decending:
_unimplemented("Sort", "Ascending is not supported")
return g.op("TopK", input, dim_size_, axis_i=dim, outputs=2)
else:
return g.op("TopK", input, dim_size_, axis_i=dim, largest_i=decending, outputs=2)
def _topk_helper(g, input, k, dim, largest=True, sorted=False, out=None):
if out is not None:
_unimplemented("TopK", "Out parameter is not supported")
if not _is_value(k):
k = g.op("Constant", value_t=torch.tensor([k], dtype=torch.int64))
else:
k = g.op("Reshape", k, g.op("Constant", value_t=torch.tensor([1])))
if _export_onnx_opset_version <= 10:
if not largest:
_unimplemented("TopK", "Ascending is not supported")
return g.op("TopK", input, k, axis_i=dim, outputs=2)
else:
return g.op("TopK", input, k, axis_i=dim, largest_i=largest, sorted_i=sorted, outputs=2)
def _interpolate_warning(interpolate_mode):
onnx_op = "onnx:Resize" if _export_onnx_opset_version >= 10 else "onnx:Upsample"
warnings.warn("You are trying to export the model with " + onnx_op + " for ONNX opset version "
"" + str(_export_onnx_opset_version) + ". "
"This operator might cause results to not match the expected results by PyTorch.\n"
"ONNX's Upsample/Resize operator did not match Pytorch's Interpolation until opset 11. "
"Attributes to determine how to transform the input were added in onnx:Resize in opset 11 "
"to support Pytorch's behavior (like coordinate_transformation_mode and nearest_mode).\n"
"We recommend using opset 11 and above for models using this operator. ")
def _unsqueeze_helper(g, input, dim):
from torch.onnx.symbolic_opset9 import unsqueeze
return unsqueeze(g, input, dim)
def _interpolate_size_to_scales(g, input, output_size, dim):
output_size = _maybe_get_const(output_size, 'is')
if _is_value(output_size):
offset = 2
offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.float32))
dividend = g.op("Cast", output_size, to_i=cast_pytorch_to_onnx["Float"])
divisor = _slice_helper(g, g.op("Shape", input), axes=[0], ends=[maxsize], starts=[offset])
divisor = g.op("Cast", divisor, to_i=cast_pytorch_to_onnx["Float"])
scale_dims = g.op("Div", dividend, divisor)
scales = g.op("Concat", offsets, scale_dims, axis_i=0)
else:
scales_constant = [1. if i < 2 else
float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)])
for i in range(0, dim)]
scales = g.op("Constant", value_t=torch.tensor(scales_constant, dtype=torch.float32))
return scales
def _interpolate_get_scales_if_available(g, scales):
available_scales = _maybe_get_const(scales[0], 'fs') != -1 and not _is_none(scales[0])
if not available_scales:
return None
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
scales_list = g.op("Constant", value_t=torch.tensor(_maybe_get_const(scales[0], 'fs')))
scales = g.op("Concat", offsets, scales_list, axis_i=0)
return scales
def _get_interpolate_attributes(g, mode, args):
if mode == 'nearest':
align_corners = None
scales = args[0:]
else:
align_corners = args[0]
scales = args[1:]
scales = _interpolate_get_scales_if_available(g, scales)
return scales, align_corners
def _interpolate_get_scales(g, scale_factor, dim):
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
if isinstance(scale_factor.type(), torch._C.ListType) or (scale_factor.isCompleteTensor() and scale_factor.type().dim() > 0):
return g.op("Concat", offsets, scale_factor, axis_i=0)
else:
scale_factor = _unsqueeze_helper(g, scale_factor, 0)
scale_factor = g.op("Cast", scale_factor, to_i=cast_pytorch_to_onnx["Float"])
scales = [scale_factor for i in range(dim - 2)]
scale_factor = g.op("Concat", offsets, *scales, axis_i=0)
return scale_factor
def _interpolate_get_scales_and_mode(g, input, size, scale_factor, mode , align_corners):
mode = _maybe_get_const(mode, 's')
if 'linear' in mode:
mode = 'linear'
if 'cubic' in mode:
mode = 'cubic'
_interpolate_warning(mode)
align_corners = _maybe_get_const(align_corners, 'b')
if isinstance(align_corners, bool) and align_corners:
return _unimplemented("interpolate", "align_corners == True")
if not input.type().dim():
return _unimplemented("interpolate", "missing input shape")
dim = input.type().dim()
if not _is_none(scale_factor):
scale_factor = _interpolate_get_scales(g, scale_factor, dim)
elif not _is_none(size):
if not _is_packed_list(size):
is_scalar = ((_maybe_get_const(size, 't').dim() == 0))
if is_scalar:
size = _unsqueeze_helper(g, size, 0)
size = [size for i in range(dim - 2)]
size = g.op("Concat", *size, axis_i=0)
scale_factor = _interpolate_size_to_scales(g, input, size, dim)
else:
return _unimplemented("Both size and scales are None in __interpolate")
return scale_factor, mode
def _scatter_helper(g, self, dim, index, src):
if _export_onnx_opset_version <= 10:
from torch.onnx.symbolic_opset9 import scatter
else:
from torch.onnx.symbolic_opset11 import scatter
return scatter(g, self, dim, index, src)
def _arange_cast_helper(g, end, start=None, step=None, dtype=None):
def _is_all_integral(scalars):
for scalar in scalars:
try:
if scalar.type().scalarType() != 'Long':
return False
except Exception:
pass
return True
# This logic is based on torch.arange docs. If 'dtype' is provided,
# infer input types from dtype. If not, then check if any of start, stop,
# or step are floating point, and infer the type from get_default.
# Otherwise, the dtype is inferred to be torch.int64.
if dtype is None or (_is_value(dtype) and _is_none(dtype)):
if _is_all_integral([start, end, step]):
type = scalar_type_to_pytorch_type.index(torch.int64)
else:
type = scalar_type_to_pytorch_type.index(torch.get_default_dtype())
else:
type = dtype
start = g.op("Cast", start, to_i=scalar_type_to_onnx[type]) if start else None
end = g.op("Cast", end, to_i=scalar_type_to_onnx[type]) if end else None
step = g.op("Cast", step, to_i=scalar_type_to_onnx[type]) if step else None
return type, end, start, step
def _size_helper(g, self, dim):
full_shape = g.op("Shape", self)
from torch.onnx.symbolic_opset9 import select
return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim)
def _index_fill_reshape_helper(g, self, dim, index):
# 1. reshape index => [1, ..., 1, dim, 1, ..., 1]
# 2. expand index => [..., dim, ...], same shape as self except for dim.
# 3. expand value as well.
# 4. apply onnx::scatter.
from torch.onnx.symbolic_opset9 import expand
if _export_onnx_opset_version <= 10:
from torch.onnx.symbolic_opset9 import scatter
else:
from torch.onnx.symbolic_opset11 import scatter
if self.type().dim() is None:
return _unimplemented("index_fill", "input rank not accesible")
self_dim = self.type().dim()
dim_value = _parse_arg(dim, 'i')
unsqueezed_index = g.op("Unsqueeze", index, axes_i=[i for i in range(self_dim) if i != dim_value])
expanded_index_shape = scatter(g, g.op("Shape", self), 0,
g.op("Unsqueeze", dim, axes_i=[0]), g.op("Shape", index))
expanded_index = expand(g, unsqueezed_index, expanded_index_shape, None)
return expanded_index_shape, expanded_index
def _avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override, name):
if divisor_override and divisor_override.node().kind() != 'prim::Constant':
return _unimplemented(name, "divisor_override")
if not stride:
stride = kernel_size
padding = tuple(tuple_fn(padding))
return padding
def assert_training_mode(op_mode, op_name):
global _training_mode
op_mode = True if op_mode == 1 else False
if op_mode != _training_mode:
op_mode = "training " if op_mode else "inference"
training_mode = "training " if _training_mode else "inference"
# setting the model mode could result in op_mode != _training_mode
# if the model is a FuncModule. In this case we warn the user of
# the state and export depending on training_mode
warnings.warn("ONNX export mode is set to " + training_mode +
" mode, but operator " + op_name + " is set to " +
op_mode + " mode. The model will be exported in " +
training_mode + ", as specified by the export mode.")
def _flatten_helper(g, input, start_dim, end_dim, dim):
input_size = g.op("Shape", input)
slice1 = _slice_helper(g, input_size, axes=[0], starts=[0], ends=[start_dim])
slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long))]
if end_dim < dim - 1:
slice3 = _slice_helper(g, input_size, axes=[0], starts=[end_dim + 1], ends=[dim])
slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)), slice3]
final_shape = g.op("Concat", *slices, axis_i=0)
from torch.onnx.symbolic_opset9 import _reshape_from_tensor
return _reshape_from_tensor(g, input, final_shape)
def _is_split_static(split_size_or_sizes, _outputs):
if _outputs is None:
return False
if _is_value(split_size_or_sizes) and split_size_or_sizes.node().kind() != 'onnx::Constant':
return False
return True
# ---------------------------------------------------------------------
# ONNX operator version
# ---------------------------------------------------------------------
# READ ME BEFORE EDITING _default_onnx_opset_version:
#
# The variable below controls which ONNX operator set version we are
# targeting. THIS VARIABLE HAS SEMANTIC EFFECT! Say a breaking
# change occurred in version 8. As long as this variable < 8, you can
# export models targeting the old behavior. However, if you bump
# this variable to 8 or later, the breaking change will take into effect:
# you MUST adjust any symbolic affected by breaking changes. The ONNX
# spec publishes a *comprehensive* list of BC-breaking changes for every
# operator revision at:
#
# https://github.com/onnx/onnx/blob/master/docs/Changelog.md
#
# Please be sure to go through and check all of our implementations here before
# increasing this number. This includes symbolic definitions NOT in this
# file, so grep for "OpName" (with quotes)
#
# Besides, opset_version can be specified in the invocation of export()
# and export_to_pretty_string(), and _export_onnx_opset_version will be set
# and the symbolic functions should check it to determine the behavior
# of the exporter.
_default_onnx_opset_version = 9
_onnx_master_opset = 10
_onnx_stable_opsets = [7, 8, 9, 10, 11, 12]
_export_onnx_opset_version = _default_onnx_opset_version
def _set_opset_version(opset_version):
global _export_onnx_opset_version
if opset_version == _default_onnx_opset_version:
_export_onnx_opset_version = opset_version
return
if opset_version in _onnx_stable_opsets + [_onnx_master_opset]:
_export_onnx_opset_version = opset_version
return
raise ValueError("Unsupported ONNX opset version: " + str(opset_version))
_operator_export_type = None
def _set_operator_export_type(operator_export_type):
global _operator_export_type
_operator_export_type = operator_export_type
_training_mode = None
def _set_training_mode(training_mode):
global _training_mode
_training_mode = training_mode
_onnx_shape_inference = False
def _set_onnx_shape_inference(onnx_shape_inference):
global _onnx_shape_inference
_onnx_shape_inference = onnx_shape_inference
# Metaprogram symbolics for each ATen native specialized cast operator.
# For e.g. we specify a function named `_cast_uint8_t` that instantiates an
# ONNX cast node with `to` attribute 'UINT8'
#
# TODO: remove these once we support Type's in the JIT IR and we can once again
# use the unified toType operator
cast_pytorch_to_onnx = {
'Byte': torch.onnx.TensorProtoDataType.UINT8,
'Char': torch.onnx.TensorProtoDataType.INT8,
'Double': torch.onnx.TensorProtoDataType.DOUBLE,
'Float': torch.onnx.TensorProtoDataType.FLOAT,
'Half': torch.onnx.TensorProtoDataType.FLOAT16,
'Int': torch.onnx.TensorProtoDataType.INT32,
'Long': torch.onnx.TensorProtoDataType.INT64,
'Short': torch.onnx.TensorProtoDataType.INT16,
'Bool': torch.onnx.TensorProtoDataType.BOOL,
'ComplexFloat': torch.onnx.TensorProtoDataType.COMPLEX64,
'ComplexDouble': torch.onnx.TensorProtoDataType.COMPLEX128,
'Undefined': torch.onnx.TensorProtoDataType.UNDEFINED,
}
scalar_name_to_pytorch = {
'uint8_t': 'Byte',
'int8_t': 'Char',
'double': 'Double',
'float': 'Float',
'half': 'Half',
'int': 'Int',
'int64_t': 'Long',
'int16_t': 'Short',
'bool': 'Bool',
'complex64': 'ComplexFloat',
'complex128': 'ComplexDouble'
}
# This indicates each scalar type's corresponding
# torch type. Related source:
# https://github.com/pytorch/pytorch/blob/da7468853ae322252270bbb58032668bd21b7457/c10/core/ScalarType.h
scalar_type_to_pytorch_type = [
torch.uint8, # 0
torch.int8, # 1
torch.short, # 2
torch.int, # 3
torch.int64, # 4
torch.half, # 5
torch.float, # 6
torch.double, # 7
torch.complex32, # 8
torch.complex64, # 9
torch.complex128, # 10
torch.bool, # 11
]
def _cast_func_template(to_i, g, input, non_blocking):
return g.op("Cast", input, to_i=to_i)
scalar_type_to_onnx = [
cast_pytorch_to_onnx["Byte"],
cast_pytorch_to_onnx["Char"],
cast_pytorch_to_onnx["Short"],
cast_pytorch_to_onnx["Int"],
cast_pytorch_to_onnx["Long"],
cast_pytorch_to_onnx["Half"],
cast_pytorch_to_onnx["Float"],
cast_pytorch_to_onnx["Double"],
cast_pytorch_to_onnx["Undefined"],
cast_pytorch_to_onnx["ComplexFloat"],
cast_pytorch_to_onnx["ComplexDouble"],
cast_pytorch_to_onnx["Bool"],
]
# Global set to store the list of quantized operators in the network.
# This is currently only used in the conversion of quantized ops from PT -> C2 via ONNX.
_quantized_ops = set()
|