File: symbolic_helper.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (601 lines) | stat: -rw-r--r-- 23,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

import torch
import warnings
from sys import maxsize as maxsize

import torch.onnx
# This import monkey-patches graph manipulation methods on Graph, used for the
# ONNX symbolics
import torch.onnx.utils

from functools import wraps


# Note [Edit Symbolic Files]
# EDITING THIS FILE AND SYMBOLIC_OPSET<VERSION> FILES? READ THIS FIRST!
#
# - These files is ONLY for ATen operators (e.g., operators that show up in the
#   trace as aten::blah).  If you need to special case a primitive operator,
#   look at _run_symbolic_function
# - Parameter ordering does NOT necessarily match what is in VariableType.cpp;
#   tensors are always first, then non-tensor arguments.
# - Parameter names must *exactly* match the names in VariableType.cpp, because
#   dispatch is done with keyword arguments.
# - Looking for inplace ops?  They're detected by the trailing underscore, and
#   transparently dispatched to their non inplace versions in
#   'run_symbolic_function'.   See Note [Export inplace]
#
# ----------------------------------------------------------------------------------
# A note on Tensor types
# ----------------------------------------------------------------------------------
#
# In general, we should avoid depending on the type of Tensor Values contained
# within the trace graph. However, this is sometimes unavoidable (due to ONNX
# spec requirements, etc). The TensorType object has accessors for these properties
# that return the property if it is statically known and return nullopt otherwise.
#
# In general, we should prefer to rely on the least specific information possible.
# For example, not relying on tensor properties at all is better than relying
# on the number of dimensions which is better than relying on
# concrete shapes. Doing so will make the export symbolics
# more robust to different graphs.

# ---------------------------------------------------------------------------------
# Helper functions
# ---------------------------------------------------------------------------------

# Save some builtins as locals, because we'll shadow them below
_sum = sum


def _parse_arg(value, desc):
    if desc == 'none':
        return value
    if desc == 'v' or not _is_value(value):
        return value
    if value.node().mustBeNone():
        return None
    if value.node().kind() == 'onnx::Constant':
        tval = value.node()['value']
        if desc == 'i':
            return int(tval)
        elif desc == 'f':
            return float(tval)
        elif desc == 'b':
            return bool(tval)
        elif desc == 's':
            return str(tval)
        elif desc == 't':
            return tval
        elif desc == 'is':
            return [int(v) for v in tval]
        elif desc == 'fs':
            return [float(v) for v in tval]
        else:
            raise RuntimeError("ONNX symbolic doesn't know to interpret Constant node")
    elif value.node().kind() == 'prim::ListConstruct':
        if desc == 'is':
            for v in value.node().inputs():
                if v.node().kind() != 'onnx::Constant':
                    raise RuntimeError("Failed to export an ONNX attribute '" + v.node().kind() +
                                       "', since it's not constant, please try to make "
                                       "things (e.g., kernel size) static if possible")
            return [int(v.node()['value']) for v in value.node().inputs()]
        else:
            raise RuntimeError("ONNX symbolic doesn't know to interpret ListConstruct node")

    raise RuntimeError("Unexpected node type: {}".format(value.node().kind()))


def _maybe_get_const(value, desc):
    if _is_value(value) and value.node().kind() == 'onnx::Constant':
        return _parse_arg(value, desc)
    return value


def _maybe_get_scalar(value):
    value_t = _maybe_get_const(value, 't')
    if isinstance(value_t, torch.Tensor) and value_t.shape == ():
        return value_t
    return value


def _get_const(value, desc, arg_name):
    if _is_value(value) and value.node().kind() not in ('onnx::Constant', 'prim::Constant'):
        raise RuntimeError("ONNX symbolic expected a constant value of the {} argument, got `{}`".format(arg_name, value))
    return _parse_arg(value, desc)


def _unpack_list(list_value):
    list_node = list_value.node()
    assert list_node.kind() == "prim::ListConstruct"
    return list(list_node.inputs())


# Check if list_value is output from prim::ListConstruct
# This is usually called before _unpack_list to ensure the list can be unpacked.
def _is_packed_list(list_value):
    return _is_value(list_value) and list_value.node().kind() == "prim::ListConstruct"


def parse_args(*arg_descriptors):
    def decorator(fn):
        fn._arg_descriptors = arg_descriptors

        def wrapper(g, *args, **kwargs):
            # some args may be optional, so the length may be smaller
            assert len(arg_descriptors) >= len(args)
            args = [_parse_arg(arg, arg_desc) for arg, arg_desc in zip(args, arg_descriptors)]
            # only support _outputs in kwargs
            assert len(kwargs) <= 1
            if len(kwargs) == 1:
                assert '_outputs' in kwargs
            return fn(g, *args, **kwargs)
        # In Python 2 functools.wraps chokes on partially applied functions, so we need this as a workaround
        try:
            wrapper = wraps(fn)(wrapper)
        except Exception:
            pass
        return wrapper
    return decorator


def _scalar(x):
    """Convert a scalar tensor into a Python value."""
    assert x.numel() == 1
    return x.item()


def _if_scalar_type_as(g, self, tensor):
    """
    Convert self into the same type of tensor, as necessary.

    We only support implicit casting for scalars, so we never
    actually need to insert an ONNX cast operator here; just
    fix up the scalar.
    """
    if isinstance(self, torch._C.Value):
        return self

    scalar_type = tensor.type().scalarType()
    if scalar_type:
        ty = scalar_type.lower()
        return getattr(self, ty)()

    return self


def _is_none(x):
    return x.node().mustBeNone()

def _is_value(x):
    return isinstance(x, torch._C.Value)

def _is_tensor(x):
    return x.type().isSubtypeOf(torch._C.TensorType.get())

def _is_tensor_list(x):
    return isinstance(x.type(), torch._C.ListType) and isinstance(x.type().getElementType(), torch._C.TensorType)


def _unimplemented(op, msg):
    warnings.warn("ONNX export failed on " + op + " because " + msg + " not supported")


def _onnx_unsupported(op_name):
    raise RuntimeError('Unsupported: ONNX export of operator {}. '
                       'Please open a bug to request ONNX export support for the missing operator.'.format(op_name))


def _onnx_opset_unsupported(op_name, current_opset, supported_opset):
    raise RuntimeError('Unsupported: ONNX export of {} in '
                       'opset {}. Please try opset version {}.'.format(op_name, current_opset, supported_opset))

def _onnx_opset_unsupported_detailed(op_name, current_opset, supported_opset, reason):
    raise RuntimeError('Unsupported: ONNX export of {} in '
                       'opset {}. {}. Please try opset version {}.'.format(op_name, current_opset, reason, supported_opset))


def _block_list_in_opset(name):
    def symbolic_fn(*args, **kwargs):
        raise RuntimeError("ONNX export failed on {}, which is not implemented for opset {}. "
                           "Try exporting with other opset versions."
                           .format(name, _export_onnx_opset_version))
    return symbolic_fn


def _try_get_scalar_type(*args):
    for arg in args:
        try:
            return arg.type().scalarType()
        except RuntimeError:
            pass
    return None


def _slice_helper(g, input, axes, starts, ends, steps=None, dynamic_slice=False):
    if _export_onnx_opset_version <= 9:
        from torch.onnx.symbolic_opset9 import _slice
        return _slice(g, input, axes, starts, ends)
    else:
        from torch.onnx.symbolic_opset10 import _slice
        return _slice(g, input, axes, starts, ends, steps, dynamic_slice)


def _is_fp(value):
    if value:
        if isinstance(value, torch.Tensor):
            type = value.dtype
            return (type == 'torch.float32') or (type == 'torch.float64') or (type == 'torch.float16')
        else:
            type = value.type().scalarType()
            return (type == 'Float') or (type == 'Double') or (type == 'Half')
    return False


def _sort_helper(g, input, dim, decending=True, out=None):
    if out is not None:
        _unimplemented("Sort", "Out parameter is not supported")
    shape_ = g.op("Shape", input)
    dim_size_ = g.op("Gather", shape_, g.op("Constant", value_t=torch.tensor([dim], dtype=torch.int64)))
    if _export_onnx_opset_version <= 10:
        if not decending:
            _unimplemented("Sort", "Ascending is not supported")
        return g.op("TopK", input, dim_size_, axis_i=dim, outputs=2)
    else:
        return g.op("TopK", input, dim_size_, axis_i=dim, largest_i=decending, outputs=2)


def _topk_helper(g, input, k, dim, largest=True, sorted=False, out=None):
    if out is not None:
        _unimplemented("TopK", "Out parameter is not supported")
    if not _is_value(k):
        k = g.op("Constant", value_t=torch.tensor([k], dtype=torch.int64))
    else:
        k = g.op("Reshape", k, g.op("Constant", value_t=torch.tensor([1])))
    if _export_onnx_opset_version <= 10:
        if not largest:
            _unimplemented("TopK", "Ascending is not supported")
        return g.op("TopK", input, k, axis_i=dim, outputs=2)
    else:
        return g.op("TopK", input, k, axis_i=dim, largest_i=largest, sorted_i=sorted, outputs=2)


def _interpolate_warning(interpolate_mode):
    onnx_op = "onnx:Resize" if _export_onnx_opset_version >= 10 else "onnx:Upsample"
    warnings.warn("You are trying to export the model with " + onnx_op + " for ONNX opset version "
                  "" + str(_export_onnx_opset_version) + ". "
                  "This operator might cause results to not match the expected results by PyTorch.\n"
                  "ONNX's Upsample/Resize operator did not match Pytorch's Interpolation until opset 11. "
                  "Attributes to determine how to transform the input were added in onnx:Resize in opset 11 "
                  "to support Pytorch's behavior (like coordinate_transformation_mode and nearest_mode).\n"
                  "We recommend using opset 11 and above for models using this operator. ")

def _unsqueeze_helper(g, input, dim):
    from torch.onnx.symbolic_opset9 import unsqueeze
    return unsqueeze(g, input, dim)

def _interpolate_size_to_scales(g, input, output_size, dim):
    output_size = _maybe_get_const(output_size, 'is')
    if _is_value(output_size):
        offset = 2
        offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.float32))
        dividend = g.op("Cast", output_size, to_i=cast_pytorch_to_onnx["Float"])
        divisor = _slice_helper(g, g.op("Shape", input), axes=[0], ends=[maxsize], starts=[offset])
        divisor = g.op("Cast", divisor, to_i=cast_pytorch_to_onnx["Float"])
        scale_dims = g.op("Div", dividend, divisor)
        scales = g.op("Concat", offsets, scale_dims, axis_i=0)
    else:
        scales_constant = [1. if i < 2 else
                           float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)])
                           for i in range(0, dim)]
        scales = g.op("Constant", value_t=torch.tensor(scales_constant, dtype=torch.float32))
    return scales


def _interpolate_get_scales_if_available(g, scales):
    available_scales = _maybe_get_const(scales[0], 'fs') != -1 and not _is_none(scales[0])

    if not available_scales:
        return None

    offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
    scales_list = g.op("Constant", value_t=torch.tensor(_maybe_get_const(scales[0], 'fs')))
    scales = g.op("Concat", offsets, scales_list, axis_i=0)
    return scales


def _get_interpolate_attributes(g, mode, args):
    if mode == 'nearest':
        align_corners = None
        scales = args[0:]
    else:
        align_corners = args[0]
        scales = args[1:]
    scales = _interpolate_get_scales_if_available(g, scales)
    return scales, align_corners

def _interpolate_get_scales(g, scale_factor, dim):
    offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
    if isinstance(scale_factor.type(), torch._C.ListType) or (scale_factor.isCompleteTensor() and scale_factor.type().dim() > 0):
        return g.op("Concat", offsets, scale_factor, axis_i=0)
    else:
        scale_factor = _unsqueeze_helper(g, scale_factor, 0)
        scale_factor = g.op("Cast", scale_factor, to_i=cast_pytorch_to_onnx["Float"])
        scales = [scale_factor for i in range(dim - 2)]
    scale_factor = g.op("Concat", offsets, *scales, axis_i=0)
    return scale_factor


def _interpolate_get_scales_and_mode(g, input, size, scale_factor, mode , align_corners):
    mode = _maybe_get_const(mode, 's')
    if 'linear' in mode:
        mode = 'linear'
    if 'cubic' in mode:
        mode = 'cubic'
    _interpolate_warning(mode)

    align_corners = _maybe_get_const(align_corners, 'b')
    if isinstance(align_corners, bool) and align_corners:
        return _unimplemented("interpolate", "align_corners == True")

    if not input.type().dim():
        return _unimplemented("interpolate", "missing input shape")
    dim = input.type().dim()

    if not _is_none(scale_factor):
        scale_factor = _interpolate_get_scales(g, scale_factor, dim)
    elif not _is_none(size):
        if not _is_packed_list(size):
            is_scalar = ((_maybe_get_const(size, 't').dim() == 0))
            if is_scalar:
                size = _unsqueeze_helper(g, size, 0)
                size = [size for i in range(dim - 2)]
                size = g.op("Concat", *size, axis_i=0)
        scale_factor = _interpolate_size_to_scales(g, input, size, dim)
    else:
        return _unimplemented("Both size and scales are None in __interpolate")
    return scale_factor, mode


def _scatter_helper(g, self, dim, index, src):
    if _export_onnx_opset_version <= 10:
        from torch.onnx.symbolic_opset9 import scatter
    else:
        from torch.onnx.symbolic_opset11 import scatter
    return scatter(g, self, dim, index, src)


def _arange_cast_helper(g, end, start=None, step=None, dtype=None):
    def _is_all_integral(scalars):
        for scalar in scalars:
            try:
                if scalar.type().scalarType() != 'Long':
                    return False
            except Exception:
                pass
        return True

    # This logic is based on torch.arange docs. If 'dtype' is provided,
    # infer input types from dtype. If not, then check if any of start, stop,
    # or step are floating point, and infer the type from get_default.
    # Otherwise, the dtype is inferred to be torch.int64.
    if dtype is None or (_is_value(dtype) and _is_none(dtype)):
        if _is_all_integral([start, end, step]):
            type = scalar_type_to_pytorch_type.index(torch.int64)
        else:
            type = scalar_type_to_pytorch_type.index(torch.get_default_dtype())
    else:
        type = dtype

    start = g.op("Cast", start, to_i=scalar_type_to_onnx[type]) if start else None
    end = g.op("Cast", end, to_i=scalar_type_to_onnx[type]) if end else None
    step = g.op("Cast", step, to_i=scalar_type_to_onnx[type]) if step else None
    return type, end, start, step


def _size_helper(g, self, dim):
    full_shape = g.op("Shape", self)
    from torch.onnx.symbolic_opset9 import select
    return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim)


def _index_fill_reshape_helper(g, self, dim, index):
    # 1. reshape index => [1, ..., 1, dim, 1, ..., 1]
    # 2. expand index => [..., dim, ...], same shape as self except for dim.
    # 3. expand value as well.
    # 4. apply onnx::scatter.

    from torch.onnx.symbolic_opset9 import expand
    if _export_onnx_opset_version <= 10:
        from torch.onnx.symbolic_opset9 import scatter
    else:
        from torch.onnx.symbolic_opset11 import scatter

    if self.type().dim() is None:
        return _unimplemented("index_fill", "input rank not accesible")
    self_dim = self.type().dim()
    dim_value = _parse_arg(dim, 'i')
    unsqueezed_index = g.op("Unsqueeze", index, axes_i=[i for i in range(self_dim) if i != dim_value])
    expanded_index_shape = scatter(g, g.op("Shape", self), 0,
                                   g.op("Unsqueeze", dim, axes_i=[0]), g.op("Shape", index))
    expanded_index = expand(g, unsqueezed_index, expanded_index_shape, None)
    return expanded_index_shape, expanded_index


def _avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override, name):
    if divisor_override and divisor_override.node().kind() != 'prim::Constant':
        return _unimplemented(name, "divisor_override")
    if not stride:
        stride = kernel_size
    padding = tuple(tuple_fn(padding))
    return padding

def assert_training_mode(op_mode, op_name):
    global _training_mode
    op_mode = True if op_mode == 1 else False
    if op_mode != _training_mode:
        op_mode = "training " if op_mode else "inference"
        training_mode = "training " if _training_mode else "inference"
        # setting the model mode could result in op_mode != _training_mode
        # if the model is a FuncModule. In this case we warn the user of
        # the state and export depending on training_mode
        warnings.warn("ONNX export mode is set to " + training_mode +
                      " mode, but operator " + op_name + " is set to " +
                      op_mode + " mode. The model will be exported in " +
                      training_mode + ", as specified by the export mode.")

def _flatten_helper(g, input, start_dim, end_dim, dim):
    input_size = g.op("Shape", input)
    slice1 = _slice_helper(g, input_size, axes=[0], starts=[0], ends=[start_dim])
    slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long))]
    if end_dim < dim - 1:
        slice3 = _slice_helper(g, input_size, axes=[0], starts=[end_dim + 1], ends=[dim])
        slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)), slice3]

    final_shape = g.op("Concat", *slices, axis_i=0)
    from torch.onnx.symbolic_opset9 import _reshape_from_tensor
    return _reshape_from_tensor(g, input, final_shape)

def _is_split_static(split_size_or_sizes, _outputs):
    if _outputs is None:
        return False
    if _is_value(split_size_or_sizes) and split_size_or_sizes.node().kind() != 'onnx::Constant':
        return False
    return True

# ---------------------------------------------------------------------
# ONNX operator version
# ---------------------------------------------------------------------

# READ ME BEFORE EDITING _default_onnx_opset_version:
#
# The variable below controls which ONNX operator set version we are
# targeting. THIS VARIABLE HAS SEMANTIC EFFECT! Say a breaking
# change occurred in version 8. As long as this variable < 8, you can
# export models targeting the old behavior. However, if you bump
# this variable to 8 or later, the breaking change will take into effect:
# you MUST adjust any symbolic affected by breaking changes. The ONNX
# spec publishes a *comprehensive* list of BC-breaking changes for every
# operator revision at:
#
#   https://github.com/onnx/onnx/blob/master/docs/Changelog.md
#
# Please be sure to go through and check all of our implementations here before
# increasing this number. This includes symbolic definitions NOT in this
# file, so grep for "OpName" (with quotes)
#
# Besides, opset_version can be specified in the invocation of export()
# and export_to_pretty_string(), and _export_onnx_opset_version will be set
# and the symbolic functions should check it to determine the behavior
# of the exporter.


_default_onnx_opset_version = 9
_onnx_master_opset = 10
_onnx_stable_opsets = [7, 8, 9, 10, 11, 12]
_export_onnx_opset_version = _default_onnx_opset_version


def _set_opset_version(opset_version):
    global _export_onnx_opset_version
    if opset_version == _default_onnx_opset_version:
        _export_onnx_opset_version = opset_version
        return
    if opset_version in _onnx_stable_opsets + [_onnx_master_opset]:
        _export_onnx_opset_version = opset_version
        return
    raise ValueError("Unsupported ONNX opset version: " + str(opset_version))

_operator_export_type = None
def _set_operator_export_type(operator_export_type):
    global _operator_export_type
    _operator_export_type = operator_export_type

_training_mode = None
def _set_training_mode(training_mode):
    global _training_mode
    _training_mode = training_mode

_onnx_shape_inference = False
def _set_onnx_shape_inference(onnx_shape_inference):
    global _onnx_shape_inference
    _onnx_shape_inference = onnx_shape_inference


# Metaprogram symbolics for each ATen native specialized cast operator.
# For e.g. we specify a function named `_cast_uint8_t` that instantiates an
# ONNX cast node with `to` attribute 'UINT8'
#
# TODO: remove these once we support Type's in the JIT IR and we can once again
# use the unified toType operator
cast_pytorch_to_onnx = {
    'Byte': torch.onnx.TensorProtoDataType.UINT8,
    'Char': torch.onnx.TensorProtoDataType.INT8,
    'Double': torch.onnx.TensorProtoDataType.DOUBLE,
    'Float': torch.onnx.TensorProtoDataType.FLOAT,
    'Half': torch.onnx.TensorProtoDataType.FLOAT16,
    'Int': torch.onnx.TensorProtoDataType.INT32,
    'Long': torch.onnx.TensorProtoDataType.INT64,
    'Short': torch.onnx.TensorProtoDataType.INT16,
    'Bool': torch.onnx.TensorProtoDataType.BOOL,
    'ComplexFloat': torch.onnx.TensorProtoDataType.COMPLEX64,
    'ComplexDouble': torch.onnx.TensorProtoDataType.COMPLEX128,
    'Undefined': torch.onnx.TensorProtoDataType.UNDEFINED,
}

scalar_name_to_pytorch = {
    'uint8_t': 'Byte',
    'int8_t': 'Char',
    'double': 'Double',
    'float': 'Float',
    'half': 'Half',
    'int': 'Int',
    'int64_t': 'Long',
    'int16_t': 'Short',
    'bool': 'Bool',
    'complex64': 'ComplexFloat',
    'complex128': 'ComplexDouble'
}


# This indicates each scalar type's corresponding
# torch type. Related source:
# https://github.com/pytorch/pytorch/blob/da7468853ae322252270bbb58032668bd21b7457/c10/core/ScalarType.h
scalar_type_to_pytorch_type = [
    torch.uint8,        # 0
    torch.int8,         # 1
    torch.short,        # 2
    torch.int,          # 3
    torch.int64,        # 4
    torch.half,         # 5
    torch.float,        # 6
    torch.double,       # 7
    torch.complex32,    # 8
    torch.complex64,    # 9
    torch.complex128,   # 10
    torch.bool,         # 11
]

def _cast_func_template(to_i, g, input, non_blocking):
    return g.op("Cast", input, to_i=to_i)


scalar_type_to_onnx = [
    cast_pytorch_to_onnx["Byte"],
    cast_pytorch_to_onnx["Char"],
    cast_pytorch_to_onnx["Short"],
    cast_pytorch_to_onnx["Int"],
    cast_pytorch_to_onnx["Long"],
    cast_pytorch_to_onnx["Half"],
    cast_pytorch_to_onnx["Float"],
    cast_pytorch_to_onnx["Double"],
    cast_pytorch_to_onnx["Undefined"],
    cast_pytorch_to_onnx["ComplexFloat"],
    cast_pytorch_to_onnx["ComplexDouble"],
    cast_pytorch_to_onnx["Bool"],
]

# Global set to store the list of quantized operators in the network.
# This is currently only used in the conversion of quantized ops from PT -> C2 via ONNX.
_quantized_ops = set()