1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
import torch
import torch.onnx.symbolic_helper as sym_help
import torch.onnx.symbolic_opset9 as sym_opset9
from torch.onnx.symbolic_helper import parse_args, _unimplemented, _block_list_in_opset, _try_get_scalar_type
from torch.onnx.symbolic_opset9 import _cast_Float
import warnings
# Note [ONNX operators that are added/updated from opset 8 to opset 9]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# New operators:
# Compress
# ConstantOfShape
# EyeLike
# MaxUnpool
# OneHot
# Sinh
# Cosh
# Asinh
# Acosh
# Atanh
# Shrink
# IsNaN
# Sign
# Erf
# Scatter
# Where
# NonZero
# TfIdfVectorizer
# MeanVarianceNormalization
#
# Updated operators:
# BatchNormalization: removed spatial attribute.
# Greater, Less, Constant, MatMul, PRelu, Gemm, Flatten: more data types{integers} supported.
# Cast: more data types{string} supported.
# Upsample: moved scales from attribute to input.
# Scan
block_listed_operators = [
"nonzero", "where", "scatter", "scatter_add", "erf", "sign", "isnan", "gather",
"arange", "masked_fill",
"index_fill", "index_copy"
]
for block_listed_op in block_listed_operators:
vars()[block_listed_op] = _block_list_in_opset(block_listed_op)
def _interpolate(name, dim, interpolate_mode):
def symbolic_fn(g, input, output_size, *args):
scales, align_corners = sym_help._get_interpolate_attributes(g, interpolate_mode, args)
sym_help._interpolate_warning(interpolate_mode)
align_corners = sym_help._maybe_get_scalar(align_corners)
if align_corners:
return _unimplemented(name, "align_corners == True")
output_size = sym_help._maybe_get_const(output_size, 'is')
if sym_help._is_value(output_size):
return _unimplemented(name, "torch._C.Value (output_size) indexing")
if scales is None:
scales = [1. if i < 2 else
float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)])
for i in range(0, dim)]
return g.op("Upsample", input, mode_s=interpolate_mode, scales_f=scales)
return symbolic_fn
upsample_nearest1d = _interpolate('upsample_nearest1d', 3, "nearest")
upsample_nearest2d = _interpolate('upsample_nearest2d', 4, "nearest")
upsample_nearest3d = _interpolate('upsample_nearest3d', 5, "nearest")
upsample_linear1d = _interpolate('upsample_linear1d', 3, "linear")
upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, "linear")
upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, "linear")
def __interpolate(g, input, size, scale_factor, mode, align_corners, recompute_scale_factor):
align_corners = sym_help._maybe_get_const(align_corners, 'b')
if not sym_help._is_none(align_corners) and align_corners:
return _unimplemented("interpolate", "align_corners == True")
if not sym_help._is_none(scale_factor) and sym_help._is_value(scale_factor):
return _unimplemented("interpolate", "dynamic scales in opset 8")
if not sym_help._is_none(size) and sym_help._is_value(size):
return _unimplemented("interpolate", "dynamic size in opset 8")
scales, mode = sym_help._interpolate_get_scales_and_mode(g, input, size, scale_factor,
mode , align_corners)
return g.op("Upsample", input, mode_s=mode, scales_f=scales)
# NOTE: We should create a wrapper for this kind of operation, after resolving the shape/type propagation
# issue for "cast" operators. Some symbolic functions depend on shape information of input tensor, which
# is lost after casting.
def _try_cast_integer_to_float(g, *args):
floating_scalar_types = ['Half', 'Float', 'Double']
old_type = None
# Cast the input tensor to Float if its scalarType is known and is not floating number.
# If casting is performed, return the old scalarType, otherwise return None.
arg0_type = args[0].type().scalarType()
if arg0_type is not None:
old_type = arg0_type
if old_type not in floating_scalar_types:
args = tuple(_cast_Float(g, arg, False) for arg in args)
else:
return (None,) + args
else:
warnings.warn("Only floating datatype is supported for these operators: "
"{Greater, Less, MatMul, PRelu, Gemm, Flatten}. This might cause "
"the onnx model to be incorrect, if inputs have integer datatypes.")
return (old_type,) + args
def _cast_to_type(g, input, to_type):
if to_type is None:
return input
return getattr(sym_opset9, '_cast_{}'.format(to_type))(g, input, False)
def _comparison_operator(g, input, other, op_name):
other = sym_help._maybe_get_scalar(other)
other = sym_help._if_scalar_type_as(g, other, input)
_, input, other = _try_cast_integer_to_float(g, input, other)
return g.op(op_name, input, other)
# NOTE: For symbolics {gt, lt, bmm, matmul, prelu, mm, addmm, view, flatten},
# integer input type not supported in opset8. Cast to float if possible.
def gt(g, input, other):
return _comparison_operator(g, input, other, "Greater")
def lt(g, input, other):
return _comparison_operator(g, input, other, "Less")
def bmm(g, self, other):
if _try_get_scalar_type(self):
old_type, self, other = _try_cast_integer_to_float(g, self, other)
return _cast_to_type(g, g.op("MatMul", self, other), old_type)
else:
return g.op("MatMul", self, other)
def matmul(g, self, other):
return bmm(g, self, other)
def prelu(g, self, weight):
if self.isCompleteTensor():
self_sizes = self.type().sizes()
if self_sizes and len(self_sizes) > 2:
weight = g.op("Unsqueeze", weight, axes_i=list(range(1, len(self_sizes) - 1)))
if _try_get_scalar_type(self):
old_type, self, weight = _try_cast_integer_to_float(g, self, weight)
return _cast_to_type(g, g.op("PRelu", self, weight), old_type)
else:
return g.op("PRelu", self, weight)
def mm(g, self, other):
# Create a dummy C tensor. Only needed for API purposes, the value is
# since beta = 0
ty = sym_help._try_get_scalar_type(self, other).lower()
C = g.constant(0, [1], ty)
if _try_get_scalar_type(self):
old_type, self, other, C = _try_cast_integer_to_float(g, self, other, C)
return _cast_to_type(g, g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0), old_type)
else:
return g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0)
@parse_args('v', 'v', 'v', 't', 't')
def addmm(g, self, mat1, mat2, beta, alpha):
if _try_get_scalar_type(self):
old_type, self, mat1, mat2 = _try_cast_integer_to_float(g, self, mat1, mat2)
return _cast_to_type(
g, g.op("Gemm", mat1, mat2, self,
beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha)), old_type)
else:
return g.op("Gemm", mat1, mat2, self, beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha))
def flatten(g, input, start_dim, end_dim):
start_dim_i = sym_help._get_const(start_dim, 'i', 'start_dim')
end_dim_i = sym_help._get_const(end_dim, 'i', 'end_dim')
dim = input.type().dim()
if end_dim_i < 0 :
end_dim_i = dim + end_dim_i
# use ONNX's Flatten operator for cases where the output shape is 2D
if start_dim_i == 1 and end_dim_i == dim - 1 :
if _try_get_scalar_type(input):
old_type, input = _try_cast_integer_to_float(g, input)
return _cast_to_type(g, g.op("Flatten", input, axis_i=start_dim_i), old_type)
else:
return g.op("Flatten", input, axis_i=start_dim_i)
if start_dim_i == 0 and end_dim_i == dim - 2 :
if _try_get_scalar_type(input):
old_type, input = _try_cast_integer_to_float(g, input)
return _cast_to_type(g, g.op("Flatten", input, axis_i=end_dim_i + 1), old_type)
else:
return g.op("Flatten", input, axis_i=end_dim_i + 1)
return sym_opset9.flatten(g, input, start_dim, end_dim)
def _constant_fill(g, sizes, dtype, const_value):
if dtype is None:
dtype = 6 # float
if not sym_help.scalar_type_to_pytorch_type[dtype].is_floating_point:
result = g.op(
"ConstantFill", sizes, dtype_i=sym_help.cast_pytorch_to_onnx["Float"], input_as_shape_i=1, value_f=const_value)
return sym_help._cast_func_template(sym_help.scalar_type_to_onnx[dtype], g, result, None)
else:
return g.op("ConstantFill", sizes, dtype_i=sym_help.scalar_type_to_onnx[dtype], input_as_shape_i=1, value_f=const_value)
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
def empty(g, sizes, dtype, layout, device, pin_memory=False, memory_format=None):
return zeros(g, sizes, dtype, layout, device, pin_memory)
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
def empty_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None):
return zeros_like(g, input, dtype, layout, device, pin_memory)
@parse_args('v', 'i', 'v', 'v', 'v')
def zeros(g, sizes, dtype, layout, device, pin_memory=False):
# NOTE: no way to set device and layout in ONNX, so we ignore it
return _constant_fill(g, sizes, dtype, 0)
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
def zeros_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None):
shape = g.op("Shape", input)
return _constant_fill(g, shape, dtype, 0)
@parse_args('v', 'i', 'v', 'v', 'v')
def ones(g, sizes, dtype, layout, device, pin_memory=False):
return _constant_fill(g, sizes, dtype, 1)
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
def ones_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None):
shape = g.op("Shape", input)
return _constant_fill(g, shape, dtype, 1)
def full(g, sizes, value, dtype, layout, device, pin_memory=False):
const_value = sym_help._maybe_get_const(value, 't')
if sym_help._is_value(const_value):
tmp = zeros(g, sizes, dtype, layout, device)
return sym_opset9.add(g, tmp, value, g.op("Constant", value_t=torch.tensor(1)))
else:
dtype = sym_help._get_const(dtype, 'i', 'dtype')
return _constant_fill(g, sizes, dtype, const_value)
@parse_args('v', 'f', 'i', 'v', 'v', 'v', 'v')
def full_like(g, input, fill_value, dtype, layout, device, pin_memory=False, memory_format=None):
shape = g.op("Shape", input)
return _constant_fill(g, shape, dtype, fill_value)
def repeat(g, self, repeats):
if not sym_help._is_value(repeats):
repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
if sym_help._is_packed_list(repeats):
repeat_size_len = len(sym_help._unpack_list(repeats))
else:
const_repeats = sym_help._maybe_get_const(repeats, 'is')
repeat_size_len = len(const_repeats)
if self.isCompleteTensor():
sizes = self.type().sizes()
diff_dims = repeat_size_len - len(sizes)
if diff_dims > 0:
self = sym_opset9.view(g, self, g.op("Constant", value_t=torch.tensor([1] * diff_dims + sizes)))
return g.op("Tile", self, repeats)
|