1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
from torch._fx import (
GraphModule
)
from torch._fx.graph import (
Graph,
map_arg,
)
from .pattern_utils import (
is_match,
get_fusion_patterns,
)
from .fusion_patterns import * # noqa: F401
import copy
class Fuser:
def fuse(self, model, inplace=False):
if not inplace:
model = copy.deepcopy(model)
input_root = model
input_graph = model.graph
self.modules = dict(input_root.named_modules())
fusion_patterns = get_fusion_patterns()
# find fusion
fusion_pairs = self._find_matches(input_root, input_graph, fusion_patterns)
self.fused_graph = Graph()
env = {}
def load_arg(a):
return map_arg(a, lambda node: env[node.name])
for node in input_graph.nodes:
root_node, obj = fusion_pairs.get(node.name, (None, None))
if root_node is node:
env[node.name] = obj.fuse(self, load_arg)
elif root_node is None:
env[node.name] = self.fused_graph.node_copy(node, load_arg)
# node matched in patterns and is not root is removed here
self.fused_graph.output(load_arg(input_graph.result))
model = GraphModule(input_root, self.fused_graph)
return model
def _find_matches(self, root, graph, patterns):
modules = dict(root.named_modules())
match_map = {} # node name -> (root_node, match_value?)
def apply_match(pattern, node, match):
if isinstance(pattern, tuple):
s, *args = pattern
apply_match(s, node, match)
for subpattern, arg in zip(args, node.args):
apply_match(subpattern, arg, match)
else:
# the first pattern matches will take precedence
if node.name not in match_map:
match_map[node.name] = match
for node in reversed(graph.nodes):
if node.name not in match_map:
for pattern, value in patterns.items():
if is_match(modules, node, pattern):
apply_match(pattern, node, (node, value(self, node)))
return match_map
|