1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
import torch
from torch.testing._internal.common_utils import TEST_WITH_ROCM
class AutocastTestLists(object):
def _rnn_cell_args(self, n, num_chunks, is_lstm, dev, dtype):
input = (torch.randn((n, n), device=dev, dtype=torch.float32),)
hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
torch.randn((n, n), device=dev, dtype=torch.float32),)
weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32), # weight_ih
torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32), # weight_hh
torch.randn((num_chunks * n), device=dev, dtype=torch.float32), # bias_ih
torch.randn((num_chunks * n), device=dev, dtype=torch.float32)) # bias_hh
# returns args as a tuple
return input + hx + weights
# Supplies ops and arguments for test_autocast_* in test/test_cuda.py
def __init__(self, dev):
super().__init__()
n = 8
# Utility arguments, created as one-element tuples
pointwise0_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
pointwise1_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
pointwise2_fp16 = (torch.randn(n, dtype=torch.float16, device=dev),)
mat0_fp16 = (torch.randn((n, n), dtype=torch.float16, device=dev),)
mat1_fp16 = (torch.randn((n, n), dtype=torch.float16, device=dev),)
mat2_fp16 = (torch.randn((n, n), dtype=torch.float16, device=dev),)
dimsets = ((n, n, n), (n, n, n, n), (n, n, n, n, n))
conv_args_fp32 = [(torch.randn(dimset, dtype=torch.float32, device=dev),
torch.randn(dimset, dtype=torch.float32, device=dev))
for dimset in dimsets]
bias_fp32 = (torch.randn((n,), dtype=torch.float32, device=dev),)
element0_fp32 = (torch.randn(1, dtype=torch.float32, device=dev),)
pointwise0_fp32 = (torch.randn(n, dtype=torch.float32, device=dev),)
pointwise1_fp32 = (torch.randn(n, dtype=torch.float32, device=dev),)
mat0_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
mat1_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
mat2_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
mat3_fp32 = (torch.randn((n, n), dtype=torch.float32, device=dev),)
# The lists below organize ops that autocast needs to test.
# self.list_name corresponds to test_autocast_list_name in test/test_cuda.py.
# Each op is associated with a tuple of valid arguments.
# In addition, cudnn conv ops are not supported on ROCm and hence will
# be skipped by passing TEST_WITH_ROCM flag to those ops in self.torch_fp16 list.
# Some ops implement built-in type promotion. These don't need autocasting,
# but autocasting relies on their promotion, so we include tests to double-check.
self.torch_expect_builtin_promote = [
("eq", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("ge", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("gt", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("le", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("lt", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("ne", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("add", pointwise0_fp32 + pointwise1_fp16, torch.float32),
("div", pointwise0_fp32 + pointwise1_fp16, torch.float32),
("mul", pointwise0_fp32 + pointwise1_fp16, torch.float32),
]
self.methods_expect_builtin_promote = [
("__eq__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("__ge__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("__gt__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("__le__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("__lt__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("__ne__", pointwise0_fp32 + pointwise1_fp16, torch.bool),
("__add__", pointwise0_fp32 + pointwise1_fp16, torch.float32),
("__div__", pointwise0_fp32 + pointwise1_fp16, torch.float32),
("__mul__", pointwise0_fp32 + pointwise1_fp16, torch.float32),
]
# The remaining lists organize ops that autocast treats explicitly.
self.torch_fp16 = [
# deprecated _convolution
("_convolution", conv_args_fp32[1] + bias_fp32 + ((1, 1), (0, 0), (1, 1), False,
(0, 0), 1, False, True, True)),
# the current _convolution
("_convolution", conv_args_fp32[1] + bias_fp32 + ((1, 1), (0, 0), (1, 1), False,
(0, 0), 1, False, True, True, True)),
("_convolution_nogroup", conv_args_fp32[1] + bias_fp32 + ((1, 1), (0, 0), (1, 1), False, (0, 0))),
("conv1d", conv_args_fp32[0]),
("conv2d", conv_args_fp32[1]),
("conv3d", conv_args_fp32[2]),
("conv_tbc", conv_args_fp32[0] + bias_fp32),
("conv_transpose1d", conv_args_fp32[0]),
("conv_transpose2d", conv_args_fp32[1], TEST_WITH_ROCM),
("conv_transpose3d", conv_args_fp32[2], TEST_WITH_ROCM),
("convolution", conv_args_fp32[1] + bias_fp32 + ((1, 1), (0, 0), (1, 1), False, (0, 0), 1)),
# deprecated cudnn_convolutions with bias
("cudnn_convolution", conv_args_fp32[1] + bias_fp32 + ((0, 0), (1, 1), (1, 1), 1, False, True), TEST_WITH_ROCM),
("cudnn_convolution_transpose", conv_args_fp32[1] + bias_fp32 + ((0, 0), (0, 0), (1, 1),
(1, 1), 1, False, True), TEST_WITH_ROCM),
# deprecated cudnn_convolutions with no allow_tf32 flag
("cudnn_convolution", conv_args_fp32[1] + ((0, 0), (1, 1), (1, 1), 1, False, True), TEST_WITH_ROCM),
("cudnn_convolution_transpose", conv_args_fp32[1] + ((0, 0), (0, 0), (1, 1), (1, 1), 1, False, True), TEST_WITH_ROCM),
# the current cudnn_convolutions
("cudnn_convolution", conv_args_fp32[1] + ((0, 0), (1, 1), (1, 1), 1, False, True, True), TEST_WITH_ROCM),
("cudnn_convolution_transpose", conv_args_fp32[1] + ((0, 0), (0, 0), (1, 1),
(1, 1), 1, False, True, True), TEST_WITH_ROCM),
("prelu", pointwise0_fp32 + element0_fp32),
("addmm", mat1_fp32 + mat2_fp32 + mat3_fp32),
("addmv", pointwise0_fp32 + mat2_fp32 + pointwise1_fp32),
("addr", mat0_fp32 + pointwise0_fp32 + pointwise1_fp32),
("matmul", mat0_fp32 + mat1_fp32),
("mm", mat0_fp32 + mat1_fp32),
("mv", mat0_fp32 + pointwise0_fp32),
("chain_matmul", mat0_fp32 + mat1_fp32 + mat2_fp32),
("addbmm", mat0_fp32 + (torch.randn((n, n, n), device=dev, dtype=torch.float32),
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
("baddbmm", (torch.randn((n, n, n), device=dev, dtype=torch.float32),
torch.randn((n, n, n), device=dev, dtype=torch.float32),
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
("bmm", (torch.randn((n, n, n), device=dev, dtype=torch.float32),
torch.randn((n, n, n), device=dev, dtype=torch.float32))),
# _thnn_fused_lstm_cell and _thnn_fused_gru_cell are not Python-exposed as far as I can tell.
# ("_thnn_fused_lstm_cell", mat0_fp32 + mat1_fp32 + mat2_fp32 + pointwise0_fp32 + pointwise1_fp32),
# ("_thnn_fused_gru_cell", mat0_fp32 + mat1_fp32 + mat2_fp32 + pointwise0_fp32 + pointwise1_fp32),
("lstm_cell", self._rnn_cell_args(n, num_chunks=4, is_lstm=True, dev=dev, dtype=torch.float32)),
("gru_cell", self._rnn_cell_args(n, num_chunks=3, is_lstm=False, dev=dev, dtype=torch.float32)),
("rnn_tanh_cell", self._rnn_cell_args(n, num_chunks=1, is_lstm=False, dev=dev, dtype=torch.float32)),
("rnn_relu_cell", self._rnn_cell_args(n, num_chunks=1, is_lstm=False, dev=dev, dtype=torch.float32)),
]
self.torch_fp32 = [
("acos", (pointwise0_fp16[0].clamp(-.9, 0.9),)),
("asin", (pointwise0_fp16[0].clamp(-.9, 0.9),)),
("cosh", pointwise0_fp16),
("erfinv", (pointwise0_fp16[0].clamp(-.9, .9),)),
("exp", pointwise0_fp16),
("expm1", pointwise0_fp16),
("log", (pointwise0_fp16[0].clamp(0.1, 100.0),)),
("log10", (pointwise0_fp16[0].clamp(0.1, 100.0),)),
("log2", (pointwise0_fp16[0].clamp(0.1, 100.0),)),
("log1p", (pointwise0_fp16[0].clamp(-0.9, 100.0),)),
("reciprocal", pointwise0_fp16),
("rsqrt", (pointwise0_fp16[0].clamp(0.0, 100.0),)),
("sinh", pointwise0_fp16),
("tan", (pointwise0_fp16[0].clamp(-3.1 / 2, 3.1 / 2),)),
("pow", ((pointwise0_fp16[0] + 1.).clamp(0.0, 100.0),) + pointwise1_fp16),
("pow", ((pointwise0_fp16[0] + 1.).clamp(0.0, 100.0),) + (1.7,)),
# ("pow", (1.7,) + pointwise0_fp16), # This variant has a backend, but is not documented in the API.
("softmax", pointwise0_fp16 + (0,)),
("log_softmax", pointwise0_fp16 + (0,)),
("layer_norm", pointwise0_fp16 + ((pointwise0_fp16[0].numel(),),)),
("group_norm", mat0_fp16 + (1,)),
("norm", pointwise0_fp16),
("norm", pointwise0_fp16, {"dim": 0}),
# these need magma
# ("norm", mat0_fp16, {"p": "nuc"}),
# ("norm", mat0_fp16, {"p": "nuc", "dim": 0}),
("norm", pointwise0_fp16, {"p": 1}),
("norm", pointwise0_fp16, {"p": 1, "dim": 0}),
("cosine_similarity", mat0_fp16 + mat1_fp16),
("poisson_nll_loss", mat0_fp16 + mat1_fp16 + (True, False, 1.e-8, torch.nn._reduction.get_enum('mean'))),
("cosine_embedding_loss", (torch.tensor([[1, 2, 3]], device=dev, dtype=torch.float16),
torch.tensor([[1, 3, 4]], device=dev, dtype=torch.float16),
torch.tensor([1], device=dev, dtype=torch.int))),
("hinge_embedding_loss", mat0_fp16 + (torch.ones(n, device=dev, dtype=torch.int),)),
("kl_div", mat0_fp16 + (torch.rand((n, n), device=dev, dtype=torch.float16),)),
("margin_ranking_loss", mat0_fp16 + mat1_fp16 + (torch.ones((n,), device=dev, dtype=torch.float16),)),
("triplet_margin_loss", mat0_fp16 + mat1_fp16 + mat2_fp16),
("binary_cross_entropy_with_logits", mat0_fp16 + (torch.rand((n, n), device=dev, dtype=torch.float16),)),
("cumprod", pointwise0_fp16 + (0,)),
("cumsum", pointwise0_fp16 + (0,)),
("dist", pointwise0_fp16 + pointwise1_fp16),
("pdist", mat0_fp16),
("cdist", mat0_fp16 + mat1_fp16),
("prod", pointwise0_fp16),
("prod", pointwise0_fp16 + (0,)),
("renorm", mat0_fp16 + (2, 0, 1.0)),
("sum", pointwise0_fp16),
("sum", mat0_fp16 + (1,)),
]
self.torch_need_autocast_promote = [
("addcdiv", pointwise0_fp32 + pointwise1_fp16 + (pointwise2_fp16[0].clamp(0.1, 100),)),
("addcmul", pointwise0_fp32 + pointwise1_fp16 + pointwise2_fp16),
("atan2", pointwise0_fp32 + (pointwise1_fp16[0].clamp(0.1, 100),)),
("bilinear", (torch.randn((1, 2), dtype=torch.float16, device=dev),
torch.randn((1, 2), dtype=torch.float32, device=dev),
torch.randn((1, 2, 2), dtype=torch.float16, device=dev),
torch.randn((1,), dtype=torch.float32, device=dev))),
("cross", (torch.randn(3, dtype=torch.float32, device=dev),
torch.randn(3, dtype=torch.float16, device=dev))),
("cat", (pointwise0_fp16 + pointwise1_fp32,)),
("dot", pointwise0_fp16 + pointwise1_fp32),
("equal", pointwise0_fp32 + pointwise1_fp16),
("index_put", pointwise0_fp32 + ((torch.tensor([1], device=dev, dtype=torch.long),),
torch.randn(1, device=dev, dtype=torch.float16))),
("index_put", pointwise0_fp16 + ((torch.tensor([1], device=dev, dtype=torch.long),),
torch.randn(1, device=dev, dtype=torch.float32))),
("stack", (pointwise0_fp16 + pointwise1_fp32,)),
("tensordot", (torch.randn((2, 2, 2), dtype=torch.float32, device=dev),
torch.randn((2, 2, 2), dtype=torch.float16, device=dev))),
]
self.nn_fp16 = [
("linear", mat0_fp32 + mat1_fp32 + mat2_fp32),
]
self.nn_fp32 = [
("softplus", pointwise0_fp16),
("gelu", pointwise0_fp16),
("nll_loss", (torch.rand((n, n), device=dev, dtype=torch.float),
torch.zeros((n,), device=dev, dtype=torch.long))),
("nll_loss2d", (torch.rand((n, n, n, n), device=dev, dtype=torch.half),
torch.zeros((n, n, n), device=dev, dtype=torch.long))),
("l1_loss", mat0_fp16 + mat1_fp16),
("smooth_l1_loss", mat0_fp16 + mat1_fp16),
("mse_loss", mat0_fp16 + mat1_fp16),
("multilabel_margin_loss", mat0_fp16 + (torch.ones((n, n), device=dev, dtype=torch.long),)),
("soft_margin_loss", mat0_fp16 + (torch.ones((n, n), device=dev, dtype=torch.long),)),
("multi_margin_loss", mat0_fp16 + (torch.ones((n,), device=dev, dtype=torch.long),)),
]
self.methods_fp16 = [
("__matmul__", mat0_fp32 + mat1_fp32)
]
self.methods_fp32 = [
("__pow__", (torch.rand(n, device=dev, dtype=torch.float16), 1.5)),
]
self.banned = [
("binary_cross_entropy", (torch.rand((n, n), device=dev, dtype=torch.float32),
torch.rand((n, n), device=dev, dtype=torch.float32)), torch._C._nn),
]
|