1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
|
r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
import torch
import torch.nn as nn
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
import torch.distributed as dist
from torch.testing._internal.common_utils import TestCase
from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \
propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit, float_qparams_dynamic_qconfig, \
get_default_qat_qconfig
from torch.quantization import (
is_custom_module_class,
is_observed_custom_module,
)
from torch.quantization.quantization_mappings import (
get_dynamic_quant_module_mappings,
get_qconfig_propagation_list,
get_qat_module_mappings,
)
# symbolic trace
from torch._fx import symbolic_trace
# graph mode quantization based on fx
from torch.quantization import (
QuantType,
prepare_fx,
prepare_dynamic_fx,
convert_fx,
convert_dynamic_fx,
)
import copy
import io
import functools
import time
import os
import unittest
import numpy as np
from torch.testing import FileCheck
class NodeSpec:
''' Used for checking GraphModule Node
'''
def __init__(self, op, target):
'''
op: call_function | call_module
target:
for call_function, target would be a function
for call_module, target would be the type of PyTorch module
'''
self.op = op
self.target = target
@classmethod
def call_function(cls, target):
return NodeSpec('call_function', target)
@classmethod
def call_method(cls, target):
return NodeSpec('call_method', target)
@classmethod
def call_module(cls, target):
return NodeSpec('call_module', target)
def __hash__(self):
return hash((self.op, self.target))
def __eq__(self, other):
if not isinstance(other, NodeSpec):
return NotImplemented
return self.op == other.op and self.target == other.target
def __repr__(self):
return repr(self.op) + " " + repr(self.target)
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for inp in calib_data:
output = model(*inp)
_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
r"""
Default train function takes a torch.utils.data.Dataset and train the model
on the dataset
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
for i in range(10):
model.train()
for data, target in train_data:
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
model.train()
cnt = 0
for image, target in data_loader:
start_time = time.time()
print('.', end='')
cnt += 1
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(output, target, topk=(1, 5))
if cnt >= ntrain_batches:
return
return
def ddp_setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def ddp_cleanup():
dist.destroy_process_group()
def run_ddp(rank, world_size, prepared):
ddp_setup(rank, world_size)
prepared.cuda()
prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank])
prepared.to(rank)
model_with_ddp = prepared
optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001)
train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1)
ddp_cleanup()
def convert_dynamic(module):
convert(module, get_dynamic_quant_module_mappings(), inplace=True)
def prepare_dynamic(model, qconfig_dict=None):
propagate_qconfig_(model, qconfig_dict)
def _make_conv_test_input(
batch_size, in_channels_per_group, input_feature_map_size,
out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale,
W_zero_point, use_bias, use_channelwise,
):
in_channels = in_channels_per_group * groups
out_channels = out_channels_per_group * groups
(X_value_min, X_value_max) = (0, 4)
X_init = torch.randint(
X_value_min, X_value_max,
(batch_size, in_channels,) + input_feature_map_size)
X = X_scale * (X_init - X_zero_point).float()
X_q = torch.quantize_per_tensor(
X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
W_scale = W_scale * out_channels
W_zero_point = W_zero_point * out_channels
# Resize W_scale and W_zero_points arrays equal to out_channels
W_scale = W_scale[:out_channels]
W_zero_point = W_zero_point[:out_channels]
# For testing, we use small values for weights and for activations so that
# no overflow occurs in vpmaddubsw instruction. If the overflow occurs in
# qconv implementation and if there is no overflow.
# In reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file
# aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
(W_value_min, W_value_max) = (-5, 5)
# The operator expects them in the format
# (out_channels, in_channels/groups,) + kernel_size
W_init = torch.randint(
W_value_min, W_value_max,
(out_channels, in_channels_per_group,) + kernel_size)
b_init = torch.randint(0, 10, (out_channels,))
if use_channelwise:
W_shape = (-1, 1) + (1,) * len(kernel_size)
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
W = W_scales_tensor.reshape(*W_shape) * (
W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
b = X_scale * W_scales_tensor * b_init.float()
W_q = torch.quantize_per_channel(
W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0,
dtype=torch.qint8)
else:
W = W_scale[0] * (W_init - W_zero_point[0]).float()
b = X_scale * W_scale[0] * b_init.float()
W_q = torch.quantize_per_tensor(
W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
return (X, X_q, W, W_q, b if use_bias else None)
def skipIfNoFBGEMM(fn):
reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.'
if isinstance(fn, type):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
try:
import torchvision # noqa: F401
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
def get_script_module(model, tracing, data):
return torch.jit.trace(model, data) if tracing else torch.jit.script(model)
def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True):
"""
Convert lengths to offsets for embedding_bag
"""
tt = np.zeros((t.shape[0] + 1,), dtype=offset_type)
tt[1:] = t
tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type))
if use_begin_offset:
return tt[:-1]
return tt[1:]
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):
super().setUp()
self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)]
self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)]
self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)]
for _ in range(2)]
self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_dict = {1 : self.img_data_1d,
2 : self.img_data_2d,
3 : self.img_data_3d}
# Quant types that produce statically quantized ops
self.static_quant_types = [QuantType.STATIC, QuantType.QAT]
# All quant types for (fx based) graph mode quantization
self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT]
def checkNoPrepModules(self, module):
r"""Checks the module does not contain child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertFalse(hasattr(module, 'quant'))
self.assertFalse(hasattr(module, 'dequant'))
def checkNoQconfig(self, module):
r"""Checks the module does not contain qconfig
"""
self.assertFalse(hasattr(module, 'qconfig'))
for child in module.children():
self.checkNoQconfig(child)
def checkHasPrepModules(self, module):
r"""Checks the module contains child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertTrue(hasattr(module, 'module'))
self.assertTrue(hasattr(module, 'quant'))
self.assertTrue(hasattr(module, 'dequant'))
def checkObservers(self, module, propagate_qconfig_list=None):
r"""Checks the module or module's leaf descendants
have observers in preperation for quantization
"""
if propagate_qconfig_list is None:
propagate_qconfig_list = get_qconfig_propagation_list()
# check if a module is a leaf module, ignoring activation_post_process attribute
def is_leaf_module(module):
submodule_name_count = 0
for name, _ in module.named_children():
if name != 'activation_post_process':
submodule_name_count += 1
return submodule_name_count == 0
if (hasattr(module, 'qconfig') and module.qconfig is not None and
is_leaf_module(module) and not isinstance(module, torch.nn.Sequential)
and type(module) in propagate_qconfig_list) or \
is_custom_module_class(type(module)):
self.assertTrue(hasattr(module, 'activation_post_process'),
'module: ' + str(type(module)) + ' do not have observer')
# we don't need to check observers for child modules of the
# qat modules
if type(module) not in get_qat_module_mappings().values() and \
not is_observed_custom_module(module):
for child in module.children():
self.checkObservers(child)
def checkQuantDequant(self, mod):
r"""Checks that mod has nn.Quantize and
nn.DeQuantize submodules inserted
"""
self.assertEqual(type(mod.quant), nnq.Quantize)
self.assertEqual(type(mod.dequant), nnq.DeQuantize)
def checkWrappedQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnq.Linear
module, the bias is qint32, and that the module
has Quantize and DeQuantize submodules
"""
self.assertEqual(type(mod.module), nnq.Linear)
self.checkQuantDequant(mod)
def checkQuantizedLinear(self, mod):
self.assertEqual(type(mod), nnq.Linear)
def checkDynamicQuantizedLinear(self, mod, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
self.assertEqual(type(mod), nnqd.Linear)
self.assertEqual(mod._packed_params.dtype, dtype)
def check_eager_serialization(self, ref_model, loaded_model, x):
# Check state dict serialization and torch.save APIs
model_dict = ref_model.state_dict()
b = io.BytesIO()
torch.save(model_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
loaded_model.load_state_dict(loaded_dict)
ref_out = ref_model(*x)
load_out = loaded_model(*x)
def check_outputs(ref_out, load_out):
self.assertEqual(ref_out[0], load_out[0])
if isinstance(ref_out[1], tuple):
self.assertEqual(ref_out[1][0], load_out[1][0])
self.assertEqual(ref_out[1][1], load_out[1][1])
else:
self.assertEqual(ref_out[1], load_out[1])
check_outputs(ref_out, load_out)
b = io.BytesIO()
torch.save(ref_model, b)
b.seek(0)
loaded = torch.load(b)
load_out = loaded(*x)
check_outputs(ref_out, load_out)
def check_weight_bias_api(self, ref_model, weight_keys, bias_keys):
weight = ref_model.get_weight()
bias = ref_model.get_bias()
self.assertEqual(weight_keys ^ weight.keys(), set())
self.assertEqual(bias_keys ^ bias.keys(), set())
def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.LSTM type
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkLinear(self, mod):
self.assertEqual(type(mod), torch.nn.Linear)
def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
if hasattr(mod, '_all_weight_values'):
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
scripted = torch.jit.script(orig_mod)
self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)
# Use first calib_data entry as trace input
traced = torch.jit.trace(orig_mod, calib_data[0])
self._checkScriptable(orig_mod, traced, calib_data, check_save_load)
# Call this twice: once for a scripted module and once for a traced module
def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)
# Test save/load
buffer = io.BytesIO()
torch.jit.save(script_mod, buffer)
buffer.seek(0)
loaded_mod = torch.jit.load(buffer)
# Pending __get_state_ and __set_state__ support
# See tracking task https://github.com/pytorch/pytorch/issues/23984
if check_save_load:
self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)
def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
for inp in calib_data:
ref_output = orig_mod(*inp)
scripted_output = test_mod(*inp)
self.assertEqual(scripted_output, ref_output)
def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False,
check=True, eval_mode=True, dynamic=False, qconfig=None):
if debug:
print('Testing:', str(module))
qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
if eval_mode:
module = module.eval()
if dynamic:
qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig}
model = get_script_module(module, tracing, inputs[0]).eval()
if debug:
print('input graph:', model.graph)
models = {}
outputs = {}
for d in [True, False]:
if dynamic:
models[d] = quantize_dynamic_jit(model, qconfig_dict, debug=d)
# make sure it runs
outputs[d] = models[d](inputs)
else:
# module under test can contain in-place ops, and we depend on
# input data staying constant for comparisons
inputs_copy = copy.deepcopy(inputs)
models[d] = quantize_jit(
model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False,
debug=d)
# make sure it runs
outputs[d] = models[d](*inputs[0])
if debug:
print('debug graph:', models[True].graph)
print('non debug graph:', models[False].graph)
if check:
# debug and non-debug option should have the same numerics
self.assertEqual(outputs[True], outputs[False])
# non debug graph should produce quantized op
FileCheck().check(quantized_op) \
.run(models[False].graph)
return models[False]
def checkGraphModuleNodes(
self, graph_module,
expected_node=None,
expected_node_occurrence=None,
expected_node_list=None):
""" Check if GraphModule contains the target node
Args:
graph_module: the GraphModule instance we want to check
expected_node, expected_node_occurrence, expected_node_list:
see docs for checkGraphModeFxOp
"""
nodes_in_graph = dict()
node_list = []
modules = dict(graph_module.named_modules())
for node in graph_module.graph.nodes:
n = None
if node.op == 'call_function' or node.op == 'call_method':
n = NodeSpec(node.op, node.target)
elif node.op == 'call_module':
n = NodeSpec(node.op, type(modules[node.target]))
if n is not None:
node_list.append(n)
if n in nodes_in_graph:
nodes_in_graph[n] += 1
else:
nodes_in_graph[n] = 1
if expected_node is not None:
self.assertTrue(expected_node in nodes_in_graph, 'node:' + str(expected_node) +
' not found in the graph module')
if expected_node_occurrence is not None:
for expected_node, occurrence in expected_node_occurrence.items():
if occurrence != 0:
self.assertTrue(
expected_node in nodes_in_graph,
'Check failed for node:' + str(expected_node) +
' not found')
self.assertTrue(
nodes_in_graph[expected_node] == occurrence,
'Check failed for node:' + str(expected_node) +
' Expected occurrence:' + str(occurrence) +
' Found occurrence:' + str(nodes_in_graph[expected_node]))
else:
self.assertTrue(
expected_node not in nodes_in_graph,
'Check failed for node:' + str(expected_node) +
' expected no occurrence but found')
if expected_node_list is not None:
cur_index = 0
for n in node_list:
if cur_index == len(expected_node_list):
return
if n == expected_node_list[cur_index]:
cur_index += 1
self.assertTrue(
cur_index == len(expected_node_list),
"Check failed for graph:" +
self.printGraphModule(graph_module, print_str=False) +
"Expected ordered list:" +
str(expected_node_list))
def printGraphModule(self, graph_module, print_str=True):
modules = dict(graph_module.named_modules())
node_infos = []
for n in graph_module.graph.nodes:
node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs]))
if n.op == 'call_module':
node_info += ' module type: ' + repr(type(modules[n.target]))
node_infos.append(node_info)
str_to_print = '\n'.join(node_infos)
if print_str:
print(str_to_print)
return str_to_print
def checkGraphModeFxOp(self, model, inputs, quant_type,
expected_node=None,
expected_node_occurrence=None,
expected_node_list=None,
debug=False,
print_debug_info=False):
""" Quantizes model with graph mode quantization on fx and check if the
quantized model contains the quantized_node
Args:
model: floating point torch.nn.Module
inputs: one positional sample input arguments for model
expected_node: NodeSpec
e.g. NodeSpec.call_function(torch.quantize_per_tensor)
expected_node_occurrence: a dict from NodeSpec to
expected number of occurences (int)
e.g. {NodeSpec.call_function(torch.quantize_per_tensor) : 1,
NodeSpec.call_method('dequantize'): 1}
expected_node_list: a list of NodeSpec, used to check the order
of the occurrence of Node
e.g. [NodeSpec.call_function(torch.quantize_per_tensor),
NodeSpec.call_module(nnq.Conv2d),
NodeSpec.call_function(F.hardtanh_),
NodeSpec.call_method('dequantize')]
"""
# TODO: make img_data a single example instead of a list
if type(inputs) == list:
inputs = inputs[0]
if quant_type == QuantType.QAT:
qconfig_dict = {'': get_default_qat_qconfig(torch.backends.quantized.engine)}
model.train()
else:
qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
model.eval()
original = symbolic_trace(model)
if quant_type == QuantType.DYNAMIC:
prepare = prepare_dynamic_fx
convert = convert_dynamic_fx
else:
prepare = prepare_fx
convert = convert_fx
prepared = prepare(original, qconfig_dict)
prepared(*inputs)
qgraph = convert(prepared)
qgraph_debug = convert(prepared, debug=True)
result = qgraph(*inputs)
result_debug = qgraph_debug(*inputs)
self.assertEqual((result - result_debug).abs().max(), 0), \
'Expecting debug and non-debug option to produce identical result'
if print_debug_info:
print()
print('quant type:', quant_type)
print('origianl graph module:', type(model))
self.printGraphModule(original)
print()
print('quantized graph module:', type(qgraph))
self.printGraphModule(qgraph)
print()
qgraph_to_check = qgraph_debug if debug else qgraph
self.checkGraphModuleNodes(
qgraph_to_check, expected_node, expected_node_occurrence, expected_node_list)
def checkEmbeddingSerialization(self, qemb, num_embeddings, embedding_dim, indices, offsets, set_qconfig, is_emb_bag):
# Test serialization of dynamic EmbeddingBag module using state_dict
if is_emb_bag:
inputs = [indices, offsets]
else:
inputs = [indices]
emb_dict = qemb.state_dict()
b = io.BytesIO()
torch.save(emb_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
embedding_unpack = torch.ops.quantized.embedding_bag_unpack
# Check unpacked weight values explicitly
for key in emb_dict:
if isinstance(emb_dict[key], torch._C.ScriptObject):
assert isinstance(loaded_dict[key], torch._C.ScriptObject)
emb_weight = embedding_unpack(emb_dict[key])
loaded_weight = embedding_unpack(loaded_dict[key])
self.assertEqual(emb_weight, loaded_weight)
# Check state dict serialization and torch.save APIs
if is_emb_bag:
loaded_qemb = nnq.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
include_last_offset=True, mode='sum')
else:
loaded_qemb = nnq.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
self.check_eager_serialization(qemb, loaded_qemb, inputs)
loaded_qemb.load_state_dict(loaded_dict)
self.assertEqual(embedding_unpack(qemb._packed_params._packed_weight),
embedding_unpack(loaded_qemb._packed_params._packed_weight))
# Test JIT serialization
self.checkScriptable(qemb, [inputs], check_save_load=True)
# Test from_float call
if is_emb_bag:
float_embedding = torch.nn.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
else:
float_embedding = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
if set_qconfig:
float_embedding.qconfig = float_qparams_dynamic_qconfig
prepare_dynamic(float_embedding)
float_embedding(*inputs)
if is_emb_bag:
q_embeddingbag = nnq.EmbeddingBag.from_float(float_embedding)
expected_name = "QuantizedEmbeddingBag"
else:
q_embeddingbag = nnq.Embedding.from_float(float_embedding)
expected_name = "QuantizedEmbedding"
q_embeddingbag(*inputs)
self.assertTrue(expected_name in str(q_embeddingbag))
# Below are a series of neural net models to use in testing quantization
# Single layer models
class SingleLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class AnnotatedSingleLayerLinearModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
class SingleLayerLinearDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class RNNDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRU':
self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float)
if mod_type == 'LSTM':
self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class RNNCellDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRUCell':
self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float)
if mod_type == 'LSTMCell':
self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float)
if mod_type == 'RNNReLU':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float)
if mod_type == 'RNNTanh':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class LSTMwithHiddenDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x, hid):
x, hid = self.lstm(x, hid)
return x, hid
class ConvModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
return x
class ConvTransposeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
return x
class AnnotatedConvModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
class AnnotatedConvTransposeModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
class ConvBnModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class AnnotatedConvBnModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = default_qconfig
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.dequant(x)
return x
class AnnotatedConvBnReLUModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super(AnnotatedConvBnReLUModel, self).__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=True)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.dequant(x)
return x
def fuse_model(self):
torch.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True)
class TwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class LinearModelWithSubmodule(nn.Module):
def __init__(self):
super(LinearModelWithSubmodule, self).__init__()
self.subm = TwoLayerLinearModel()
self.fc = nn.Linear(5, 5)
def forward(self, x):
x = self.subm(x)
x = self.fc(x)
return x
class AnnotatedTwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
self.fc2.qconfig = torch.quantization.get_default_qconfig("fbgemm")
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class ActivationsTestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig("fbgemm")
self.quant = torch.quantization.QuantStub()
self.hardswish = torch.nn.Hardswish().to(dtype=torch.float)
self.elu = torch.nn.ELU().to(dtype=torch.float)
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.hardswish(x)
x = self.elu(x)
x = self.dequant(x)
return x
class LinearReluModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
class NormalizationTestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant = torch.quantization.QuantStub()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.layer_norm = torch.nn.LayerNorm((8))
self.group_norm = torch.nn.GroupNorm(2, 8)
self.instance_norm1d = torch.nn.InstanceNorm1d(8)
self.instance_norm2d = torch.nn.InstanceNorm2d(8)
self.instance_norm3d = torch.nn.InstanceNorm3d(8)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.layer_norm(x)
x = self.group_norm(x.unsqueeze(-1))
x = self.instance_norm1d(x)
x = self.instance_norm2d(x.unsqueeze(-1))
x = self.instance_norm3d(x.unsqueeze(-1))
return x
class NestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedNestedModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
if qengine == 'fbgemm':
self.sub2.fc1.qconfig = default_per_channel_qconfig
else:
self.sub2.fc1.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedSubNestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedCustomConfigNestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
custom_options = {
'dtype': torch.quint8,
'qscheme': torch.per_tensor_affine
}
custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options),
weight=default_weight_observer)
self.sub2.fc1.qconfig = custom_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc2 = QuantWrapper(self.sub2.fc2)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class QuantSubModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.sub2.qconfig = default_qconfig
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.fc3.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class InnerModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.relu1 = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
self.relu2 = torch.nn.ReLU()
def forward(self, x):
return self.relu2(self.fc2(self.relu1(self.fc1(x))))
def fuse_modules(self):
fusable_layers = []
named_children = list(self.named_children())
for idx, (current_name, layer) in enumerate(named_children):
if isinstance(layer, torch.nn.Linear):
if idx >= len(named_children) - 1:
break
if isinstance(named_children[idx + 1][1], torch.nn.ReLU):
fusable_layers.append([current_name,
named_children[idx + 1][0]])
torch.quantization.fuse_modules(self, fusable_layers, inplace=True)
class SkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self):
super().__init__()
self.sub = InnerModule()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.fuse_modules()
class AnnotatedSkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.sub = QuantWrapper(InnerModule())
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
# don't quantize this fc
self.fc.qconfig = None
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.module.fuse_modules()
class QuantStubModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc(x)
return self.dequant(x)
class ManualLinearQATModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qat_qconfig(qengine)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class ManualConvLinearQATModel(torch.nn.Module):
r"""A module with manually inserted `QuantStub` and `DeQuantStub`
and contains both linear and conv modules
"""
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qat_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = x.view(-1, 64).contiguous()
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class SubModelForFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.bn = nn.BatchNorm2d(2).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class SubModelWithoutFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=False).to(dtype=torch.float)
def forward(self, x):
return self.relu(self.conv(x))
class ModelForFusion(nn.Module):
def __init__(self, qconfig):
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.sub1 = SubModelForFusion()
self.sub2 = SubModelWithoutFusion()
self.fc = nn.Linear(36, 10).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.qconfig = qconfig
self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float)
self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float)
self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float)
self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float)
self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float)
self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float)
# don't quantize sub2
self.sub2.qconfig = None
self.fc.qconfig = None
def forward(self, x):
x = x.squeeze(2)
x = self.quant(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu4(x)
x = x.unsqueeze(2)
y = x.unsqueeze(2)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.sub1(x)
x = self.dequant(x)
x = self.sub2(x)
x = x.view(-1, 36).contiguous()
x = self.fc(x)
y = self.conv2(y)
y = self.relu2(y)
y = self.bn2(y)
y = self.relu3(y)
y = self.dequant(y)
return x
class ConvBNReLU(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=False)
)
class ModelWithSequentialFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1)
self.relu1 = nn.ReLU(inplace=False)
layers = []
for i in range(3):
layers.append(ConvBNReLU())
self.features = nn.Sequential(*layers)
head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
self.classifier = nn.Sequential(*head)
self.seq = nn.Sequential()
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.relu1(x)
x = self.features(x)
x = torch.reshape(x, (-1, 3 * 10 * 10))
x = self.classifier(x)
x = self.seq(x)
x = self.dequant(x)
return x
class ModelForFusionWithBias(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float)
self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.dequant(x)
return x
class DummyObserver(torch.nn.Module):
def calculate_qparams(self):
return 1.0, 0
def forward(self, x):
return x
class ModelWithFunctionals(torch.nn.Module):
def __init__(self):
super().__init__()
self.mycat = nnq.FloatFunctional()
self.myadd = nnq.FloatFunctional()
self.myadd_relu = nnq.FloatFunctional()
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# self.my_scalar_add = nnq.FloatFunctional()
# self.my_scalar_mul = nnq.FloatFunctional()
def forward(self, x):
y = self.mycat.cat([x, x, x])
z = self.myadd.add(y, y)
w = self.myadd_relu.add_relu(z, z)
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# w = self.my_scalar_add.add_scalar(w, -0.5)
# w = self.my_scalar_mul.mul_scalar(w, 0.5)
return w
class ResNetBase(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.myop = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.myop.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
return out
class ModelMultipleOps(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.skip_add.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.reshape(-1, 3 * 2 * 2)
out = self.fc(out)
return out
# Model to ensure consistency of fake quant with true quant
# Average pooling and mean operations are not modelled
# accurately with fake-quant so this model does not
# contain those operations
class ModelMultipleOpsNoAvgPool(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.maxpool = nn.MaxPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
skip = self.conv2(x)
out = self.skip_add.add(out, skip)
out = self.relu2(out)
out = self.maxpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.reshape(-1, 3 * 2 * 2)
out = self.fc(out)
return out
class EmbeddingBagModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
def forward(self, indices, offsets, per_sample_weights):
return self.emb(indices, offsets, per_sample_weights)
class EmbeddingModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)
def forward(self, indices):
return self.emb(indices)
class EmbeddingWithLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)
self.fc = torch.nn.Linear(5, 5)
self.emb.qconfig = float_qparams_dynamic_qconfig
self.qconfig = default_qconfig
def forward(self, indices, linear_in):
return self.emb(indices), self.fc(linear_in)
|