File: common_quantization.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1444 lines) | stat: -rw-r--r-- 52,786 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""

import torch
import torch.nn as nn
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
import torch.distributed as dist

from torch.testing._internal.common_utils import TestCase
from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
    default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \
    propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit, float_qparams_dynamic_qconfig, \
    get_default_qat_qconfig
from torch.quantization import (
    is_custom_module_class,
    is_observed_custom_module,
)
from torch.quantization.quantization_mappings import (
    get_dynamic_quant_module_mappings,
    get_qconfig_propagation_list,
    get_qat_module_mappings,
)
# symbolic trace
from torch._fx import symbolic_trace

# graph mode quantization based on fx
from torch.quantization import (
    QuantType,
    prepare_fx,
    prepare_dynamic_fx,
    convert_fx,
    convert_dynamic_fx,
)

import copy
import io
import functools
import time
import os

import unittest
import numpy as np
from torch.testing import FileCheck

class NodeSpec:
    ''' Used for checking GraphModule Node
    '''
    def __init__(self, op, target):
        '''
        op: call_function | call_module
        target:
          for call_function, target would be a function
          for call_module, target would be the type of PyTorch module
        '''
        self.op = op
        self.target = target

    @classmethod
    def call_function(cls, target):
        return NodeSpec('call_function', target)

    @classmethod
    def call_method(cls, target):
        return NodeSpec('call_method', target)

    @classmethod
    def call_module(cls, target):
        return NodeSpec('call_module', target)

    def __hash__(self):
        return hash((self.op, self.target))

    def __eq__(self, other):
        if not isinstance(other, NodeSpec):
            return NotImplemented

        return self.op == other.op and self.target == other.target

    def __repr__(self):
        return repr(self.op) + " " + repr(self.target)

def test_only_eval_fn(model, calib_data):
    r"""
    Default evaluation function takes a torch.utils.data.Dataset or a list of
    input Tensors and run the model on the dataset
    """
    for inp in calib_data:
        output = model(*inp)

_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
    r"""
    Default train function takes a torch.utils.data.Dataset and train the model
    on the dataset
    """
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    train_loss, correct, total = 0, 0, 0
    for i in range(10):
        model.train()
        for data, target in train_data:
            optimizer.zero_grad()
            output = model(data)
            loss = loss_fn(output, target)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
            _, predicted = torch.max(output, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    return train_loss, correct, total

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=':f'):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res

def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
    model.train()
    cnt = 0
    for image, target in data_loader:
        start_time = time.time()
        print('.', end='')
        cnt += 1
        image, target = image.to(device), target.to(device)
        output = model(image)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        if cnt >= ntrain_batches:
            return
    return

def ddp_setup(rank, world_size):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12355'

    # initialize the process group
    dist.init_process_group("gloo", rank=rank, world_size=world_size)

def ddp_cleanup():
    dist.destroy_process_group()

def run_ddp(rank, world_size, prepared):
    ddp_setup(rank, world_size)
    prepared.cuda()
    prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank])
    prepared.to(rank)
    model_with_ddp = prepared
    optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001)
    train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1)
    ddp_cleanup()


def convert_dynamic(module):
    convert(module, get_dynamic_quant_module_mappings(), inplace=True)

def prepare_dynamic(model, qconfig_dict=None):
    propagate_qconfig_(model, qconfig_dict)

def _make_conv_test_input(
    batch_size, in_channels_per_group, input_feature_map_size,
    out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale,
    W_zero_point, use_bias, use_channelwise,
):
    in_channels = in_channels_per_group * groups
    out_channels = out_channels_per_group * groups

    (X_value_min, X_value_max) = (0, 4)
    X_init = torch.randint(
        X_value_min, X_value_max,
        (batch_size, in_channels,) + input_feature_map_size)
    X = X_scale * (X_init - X_zero_point).float()
    X_q = torch.quantize_per_tensor(
        X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)

    W_scale = W_scale * out_channels
    W_zero_point = W_zero_point * out_channels
    # Resize W_scale and W_zero_points arrays equal to out_channels
    W_scale = W_scale[:out_channels]
    W_zero_point = W_zero_point[:out_channels]
    # For testing, we use small values for weights and for activations so that
    # no overflow occurs in vpmaddubsw instruction. If the overflow occurs in
    # qconv implementation and if there is no overflow.
    # In reference we can't exactly match the results with reference.
    # Please see the comment in qconv implementation file
    #   aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
    (W_value_min, W_value_max) = (-5, 5)
    # The operator expects them in the format
    # (out_channels, in_channels/groups,) + kernel_size
    W_init = torch.randint(
        W_value_min, W_value_max,
        (out_channels, in_channels_per_group,) + kernel_size)
    b_init = torch.randint(0, 10, (out_channels,))

    if use_channelwise:
        W_shape = (-1, 1) + (1,) * len(kernel_size)
        W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
        W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
        W = W_scales_tensor.reshape(*W_shape) * (
            W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
        b = X_scale * W_scales_tensor * b_init.float()
        W_q = torch.quantize_per_channel(
            W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0,
            dtype=torch.qint8)
    else:
        W = W_scale[0] * (W_init - W_zero_point[0]).float()
        b = X_scale * W_scale[0] * b_init.float()
        W_q = torch.quantize_per_tensor(
            W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)

    return (X, X_q, W, W_q, b if use_bias else None)

def skipIfNoFBGEMM(fn):
    reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.'
    if isinstance(fn, type):
        if 'fbgemm' not in torch.backends.quantized.supported_engines:
            fn.__unittest_skip__ = True
            fn.__unittest_skip_why__ = reason
        return fn

    @functools.wraps(fn)
    def wrapper(*args, **kwargs):
        if 'fbgemm' not in torch.backends.quantized.supported_engines:
            raise unittest.SkipTest(reason)
        else:
            fn(*args, **kwargs)
    return wrapper

try:
    import torchvision  # noqa: F401
    HAS_TORCHVISION = True
except ImportError:
    HAS_TORCHVISION = False
skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")

def get_script_module(model, tracing, data):
    return torch.jit.trace(model, data) if tracing else torch.jit.script(model)

def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True):
    """
    Convert lengths to offsets for embedding_bag
    """
    tt = np.zeros((t.shape[0] + 1,), dtype=offset_type)
    tt[1:] = t
    tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type))
    if use_begin_offset:
        return tt[:-1]
    return tt[1:]

# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
    def setUp(self):
        super().setUp()
        self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)]
        self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)]
        self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)]
                            for _ in range(2)]
        self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)]
                            for _ in range(2)]
        self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)]
                            for _ in range(2)]
        self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float),
                                   torch.randint(0, 1, (1,), dtype=torch.long)]
                                  for _ in range(2)]
        self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float),
                                   torch.randint(0, 1, (1,), dtype=torch.long)]
                                  for _ in range(2)]
        self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float),
                                   torch.randint(0, 1, (1,), dtype=torch.long)]
                                  for _ in range(2)]

        self.img_data_dict = {1 : self.img_data_1d,
                              2 : self.img_data_2d,
                              3 : self.img_data_3d}

        # Quant types that produce statically quantized ops
        self.static_quant_types = [QuantType.STATIC, QuantType.QAT]
        # All quant types for (fx based) graph mode quantization
        self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT]

    def checkNoPrepModules(self, module):
        r"""Checks the module does not contain child
            modules for quantization prepration, e.g.
            quant, dequant and observer
        """
        self.assertFalse(hasattr(module, 'quant'))
        self.assertFalse(hasattr(module, 'dequant'))

    def checkNoQconfig(self, module):
        r"""Checks the module does not contain qconfig
        """
        self.assertFalse(hasattr(module, 'qconfig'))

        for child in module.children():
            self.checkNoQconfig(child)

    def checkHasPrepModules(self, module):
        r"""Checks the module contains child
            modules for quantization prepration, e.g.
            quant, dequant and observer
        """
        self.assertTrue(hasattr(module, 'module'))
        self.assertTrue(hasattr(module, 'quant'))
        self.assertTrue(hasattr(module, 'dequant'))

    def checkObservers(self, module, propagate_qconfig_list=None):
        r"""Checks the module or module's leaf descendants
            have observers in preperation for quantization
        """
        if propagate_qconfig_list is None:
            propagate_qconfig_list = get_qconfig_propagation_list()

        # check if a module is a leaf module, ignoring activation_post_process attribute
        def is_leaf_module(module):
            submodule_name_count = 0
            for name, _ in module.named_children():
                if name != 'activation_post_process':
                    submodule_name_count += 1
            return submodule_name_count == 0

        if (hasattr(module, 'qconfig') and module.qconfig is not None and
           is_leaf_module(module) and not isinstance(module, torch.nn.Sequential)
           and type(module) in propagate_qconfig_list) or \
           is_custom_module_class(type(module)):
            self.assertTrue(hasattr(module, 'activation_post_process'),
                            'module: ' + str(type(module)) + ' do not have observer')
        # we don't need to check observers for child modules of the
        # qat modules
        if type(module) not in get_qat_module_mappings().values() and \
           not is_observed_custom_module(module):
            for child in module.children():
                self.checkObservers(child)

    def checkQuantDequant(self, mod):
        r"""Checks that mod has nn.Quantize and
            nn.DeQuantize submodules inserted
        """
        self.assertEqual(type(mod.quant), nnq.Quantize)
        self.assertEqual(type(mod.dequant), nnq.DeQuantize)

    def checkWrappedQuantizedLinear(self, mod):
        r"""Checks that mod has been swapped for an nnq.Linear
            module, the bias is qint32, and that the module
            has Quantize and DeQuantize submodules
        """
        self.assertEqual(type(mod.module), nnq.Linear)
        self.checkQuantDequant(mod)

    def checkQuantizedLinear(self, mod):
        self.assertEqual(type(mod), nnq.Linear)

    def checkDynamicQuantizedLinear(self, mod, dtype):
        r"""Checks that mod has been swapped for an nnqd.Linear
            module, the bias is float.
        """
        self.assertEqual(type(mod), nnqd.Linear)
        self.assertEqual(mod._packed_params.dtype, dtype)

    def check_eager_serialization(self, ref_model, loaded_model, x):
        # Check state dict serialization and torch.save APIs
        model_dict = ref_model.state_dict()
        b = io.BytesIO()
        torch.save(model_dict, b)
        b.seek(0)
        loaded_dict = torch.load(b)
        loaded_model.load_state_dict(loaded_dict)
        ref_out = ref_model(*x)
        load_out = loaded_model(*x)

        def check_outputs(ref_out, load_out):
            self.assertEqual(ref_out[0], load_out[0])
            if isinstance(ref_out[1], tuple):
                self.assertEqual(ref_out[1][0], load_out[1][0])
                self.assertEqual(ref_out[1][1], load_out[1][1])
            else:
                self.assertEqual(ref_out[1], load_out[1])

        check_outputs(ref_out, load_out)
        b = io.BytesIO()
        torch.save(ref_model, b)
        b.seek(0)
        loaded = torch.load(b)
        load_out = loaded(*x)
        check_outputs(ref_out, load_out)

    def check_weight_bias_api(self, ref_model, weight_keys, bias_keys):
        weight = ref_model.get_weight()
        bias = ref_model.get_bias()
        self.assertEqual(weight_keys ^ weight.keys(), set())
        self.assertEqual(bias_keys ^ bias.keys(), set())

    def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype):
        r"""Checks that mod has been swapped for an nnqd.LSTM type
            module, the bias is float.
        """
        wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
        self.assertEqual(type(mod), reference_module_type)
        for packed_params in mod._all_weight_values:
            self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])

    def checkLinear(self, mod):
        self.assertEqual(type(mod), torch.nn.Linear)

    def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype):
        r"""Checks that mod has been swapped for an nnqd.Linear
            module, the bias is float.
        """
        wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
        self.assertEqual(type(mod), reference_module_type)
        if hasattr(mod, '_all_weight_values'):
            for packed_params in mod._all_weight_values:
                self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])

    def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
        scripted = torch.jit.script(orig_mod)
        self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)

        # Use first calib_data entry as trace input
        traced = torch.jit.trace(orig_mod, calib_data[0])
        self._checkScriptable(orig_mod, traced, calib_data, check_save_load)

    # Call this twice: once for a scripted module and once for a traced module
    def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
        self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)

        # Test save/load
        buffer = io.BytesIO()
        torch.jit.save(script_mod, buffer)

        buffer.seek(0)
        loaded_mod = torch.jit.load(buffer)
        # Pending __get_state_ and __set_state__ support
        # See tracking task https://github.com/pytorch/pytorch/issues/23984
        if check_save_load:
            self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)

    def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
        for inp in calib_data:
            ref_output = orig_mod(*inp)
            scripted_output = test_mod(*inp)
            self.assertEqual(scripted_output, ref_output)


    def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False,
                         check=True, eval_mode=True, dynamic=False, qconfig=None):
        if debug:
            print('Testing:', str(module))
        qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}

        if eval_mode:
            module = module.eval()
        if dynamic:
            qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig}
        model = get_script_module(module, tracing, inputs[0]).eval()
        if debug:
            print('input graph:', model.graph)
        models = {}
        outputs = {}
        for d in [True, False]:
            if dynamic:
                models[d] = quantize_dynamic_jit(model, qconfig_dict, debug=d)
                # make sure it runs
                outputs[d] = models[d](inputs)
            else:
                # module under test can contain in-place ops, and we depend on
                # input data staying constant for comparisons
                inputs_copy = copy.deepcopy(inputs)
                models[d] = quantize_jit(
                    model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False,
                    debug=d)
                # make sure it runs
                outputs[d] = models[d](*inputs[0])

        if debug:
            print('debug graph:', models[True].graph)
            print('non debug graph:', models[False].graph)

        if check:
            # debug and non-debug option should have the same numerics
            self.assertEqual(outputs[True], outputs[False])

            # non debug graph should produce quantized op
            FileCheck().check(quantized_op) \
                       .run(models[False].graph)

        return models[False]

    def checkGraphModuleNodes(
            self, graph_module,
            expected_node=None,
            expected_node_occurrence=None,
            expected_node_list=None):
        """ Check if GraphModule contains the target node
        Args:
            graph_module: the GraphModule instance we want to check
            expected_node, expected_node_occurrence, expected_node_list:
               see docs for checkGraphModeFxOp
        """
        nodes_in_graph = dict()
        node_list = []
        modules = dict(graph_module.named_modules())
        for node in graph_module.graph.nodes:
            n = None
            if node.op == 'call_function' or node.op == 'call_method':
                n = NodeSpec(node.op, node.target)
            elif node.op == 'call_module':
                n = NodeSpec(node.op, type(modules[node.target]))

            if n is not None:
                node_list.append(n)
                if n in nodes_in_graph:
                    nodes_in_graph[n] += 1
                else:
                    nodes_in_graph[n] = 1

        if expected_node is not None:
            self.assertTrue(expected_node in nodes_in_graph, 'node:' + str(expected_node) +
                            ' not found in the graph module')

        if expected_node_occurrence is not None:
            for expected_node, occurrence in expected_node_occurrence.items():
                if occurrence != 0:
                    self.assertTrue(
                        expected_node in nodes_in_graph,
                        'Check failed for node:' + str(expected_node) +
                        ' not found')
                    self.assertTrue(
                        nodes_in_graph[expected_node] == occurrence,
                        'Check failed for node:' + str(expected_node) +
                        ' Expected occurrence:' + str(occurrence) +
                        ' Found occurrence:' + str(nodes_in_graph[expected_node]))
                else:
                    self.assertTrue(
                        expected_node not in nodes_in_graph,
                        'Check failed for node:' + str(expected_node) +
                        ' expected no occurrence but found')

        if expected_node_list is not None:
            cur_index = 0
            for n in node_list:
                if cur_index == len(expected_node_list):
                    return
                if n == expected_node_list[cur_index]:
                    cur_index += 1
            self.assertTrue(
                cur_index == len(expected_node_list),
                "Check failed for graph:" +
                self.printGraphModule(graph_module, print_str=False) +
                "Expected ordered list:" +
                str(expected_node_list))

    def printGraphModule(self, graph_module, print_str=True):
        modules = dict(graph_module.named_modules())
        node_infos = []
        for n in graph_module.graph.nodes:
            node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs]))
            if n.op == 'call_module':
                node_info += ' module type: ' + repr(type(modules[n.target]))
            node_infos.append(node_info)
        str_to_print = '\n'.join(node_infos)
        if print_str:
            print(str_to_print)
        return str_to_print

    def checkGraphModeFxOp(self, model, inputs, quant_type,
                           expected_node=None,
                           expected_node_occurrence=None,
                           expected_node_list=None,
                           debug=False,
                           print_debug_info=False):
        """ Quantizes model with graph mode quantization on fx and check if the
        quantized model contains the quantized_node

        Args:
            model: floating point torch.nn.Module
            inputs: one positional sample input arguments for model
            expected_node: NodeSpec
                  e.g. NodeSpec.call_function(torch.quantize_per_tensor)
            expected_node_occurrence: a dict from NodeSpec to
                  expected number of occurences (int)
                  e.g. {NodeSpec.call_function(torch.quantize_per_tensor) : 1,
                        NodeSpec.call_method('dequantize'): 1}
            expected_node_list: a list of NodeSpec, used to check the order
                  of the occurrence of Node
                  e.g. [NodeSpec.call_function(torch.quantize_per_tensor),
                        NodeSpec.call_module(nnq.Conv2d),
                        NodeSpec.call_function(F.hardtanh_),
                        NodeSpec.call_method('dequantize')]
        """
        # TODO: make img_data a single example instead of a list
        if type(inputs) == list:
            inputs = inputs[0]
        if quant_type == QuantType.QAT:
            qconfig_dict = {'': get_default_qat_qconfig(torch.backends.quantized.engine)}
            model.train()
        else:
            qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
            model.eval()
        original = symbolic_trace(model)

        if quant_type == QuantType.DYNAMIC:
            prepare = prepare_dynamic_fx
            convert = convert_dynamic_fx
        else:
            prepare = prepare_fx
            convert = convert_fx

        prepared = prepare(original, qconfig_dict)
        prepared(*inputs)
        qgraph = convert(prepared)
        qgraph_debug = convert(prepared, debug=True)

        result = qgraph(*inputs)
        result_debug = qgraph_debug(*inputs)

        self.assertEqual((result - result_debug).abs().max(), 0), \
            'Expecting debug and non-debug option to produce identical result'

        if print_debug_info:
            print()
            print('quant type:', quant_type)
            print('origianl graph module:', type(model))
            self.printGraphModule(original)
            print()
            print('quantized graph module:', type(qgraph))
            self.printGraphModule(qgraph)
            print()
        qgraph_to_check = qgraph_debug if debug else qgraph
        self.checkGraphModuleNodes(
            qgraph_to_check, expected_node, expected_node_occurrence, expected_node_list)


    def checkEmbeddingSerialization(self, qemb, num_embeddings, embedding_dim, indices, offsets, set_qconfig, is_emb_bag):
        # Test serialization of dynamic EmbeddingBag module using state_dict
        if is_emb_bag:
            inputs = [indices, offsets]
        else:
            inputs = [indices]
        emb_dict = qemb.state_dict()
        b = io.BytesIO()
        torch.save(emb_dict, b)
        b.seek(0)
        loaded_dict = torch.load(b)
        embedding_unpack = torch.ops.quantized.embedding_bag_unpack
        # Check unpacked weight values explicitly
        for key in emb_dict:
            if isinstance(emb_dict[key], torch._C.ScriptObject):
                assert isinstance(loaded_dict[key], torch._C.ScriptObject)
                emb_weight = embedding_unpack(emb_dict[key])
                loaded_weight = embedding_unpack(loaded_dict[key])
                self.assertEqual(emb_weight, loaded_weight)

        # Check state dict serialization and torch.save APIs
        if is_emb_bag:
            loaded_qemb = nnq.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
                                           include_last_offset=True, mode='sum')
        else:
            loaded_qemb = nnq.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
        self.check_eager_serialization(qemb, loaded_qemb, inputs)

        loaded_qemb.load_state_dict(loaded_dict)
        self.assertEqual(embedding_unpack(qemb._packed_params._packed_weight),
                         embedding_unpack(loaded_qemb._packed_params._packed_weight))


        # Test JIT serialization
        self.checkScriptable(qemb, [inputs], check_save_load=True)

        # Test from_float call
        if is_emb_bag:
            float_embedding = torch.nn.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
                                                    include_last_offset=True, scale_grad_by_freq=False, mode='sum')
        else:
            float_embedding = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)

        if set_qconfig:
            float_embedding.qconfig = float_qparams_dynamic_qconfig

        prepare_dynamic(float_embedding)

        float_embedding(*inputs)
        if is_emb_bag:
            q_embeddingbag = nnq.EmbeddingBag.from_float(float_embedding)
            expected_name = "QuantizedEmbeddingBag"
        else:
            q_embeddingbag = nnq.Embedding.from_float(float_embedding)
            expected_name = "QuantizedEmbedding"

        q_embeddingbag(*inputs)

        self.assertTrue(expected_name in str(q_embeddingbag))


# Below are a series of neural net models to use in testing quantization
# Single layer models
class SingleLayerLinearModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)

    def forward(self, x):
        x = self.fc1(x)
        return x

class AnnotatedSingleLayerLinearModel(torch.nn.Module):
    def __init__(self, qengine='fbgemm'):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig(qengine)
        self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))

    def forward(self, x):
        x = self.fc1(x)
        return x

class SingleLayerLinearDynamicModel(torch.nn.Module):
    def __init__(self, qengine='fbgemm'):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig(qengine)
        self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)

    def forward(self, x):
        x = self.fc1(x)
        return x

class RNNDynamicModel(torch.nn.Module):
    def __init__(self, mod_type):
        super().__init__()
        self.qconfig = default_dynamic_qconfig
        if mod_type == 'GRU':
            self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float)
        if mod_type == 'LSTM':
            self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float)

    def forward(self, x):
        x = self.mod(x)
        return x

class RNNCellDynamicModel(torch.nn.Module):
    def __init__(self, mod_type):
        super().__init__()
        self.qconfig = default_dynamic_qconfig
        if mod_type == 'GRUCell':
            self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float)
        if mod_type == 'LSTMCell':
            self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float)
        if mod_type == 'RNNReLU':
            self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float)
        if mod_type == 'RNNTanh':
            self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float)

    def forward(self, x):
        x = self.mod(x)
        return x

class LSTMwithHiddenDynamicModel(torch.nn.Module):
    def __init__(self, qengine='fbgemm'):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig(qengine)
        self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float)

    def forward(self, x, hid):
        x, hid = self.lstm(x, hid)
        return x, hid

class ConvModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)

    def forward(self, x):
        x = self.conv(x)
        return x

class ConvTransposeModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)

    def forward(self, x):
        x = self.conv(x)
        return x

class AnnotatedConvModel(torch.nn.Module):
    def __init__(self, qengine):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig(qengine)
        self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.conv(x)
        x = self.dequant(x)
        return x

class AnnotatedConvTransposeModel(torch.nn.Module):
    def __init__(self, qengine):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig(qengine)
        self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.conv(x)
        x = self.dequant(x)
        return x

class ConvBnModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
        self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x

class AnnotatedConvBnModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.qconfig = default_qconfig
        self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
        self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.conv(x)
        x = self.bn(x)
        x = self.dequant(x)
        return x

class AnnotatedConvBnReLUModel(torch.nn.Module):
    def __init__(self, qengine='fbgemm'):
        super(AnnotatedConvBnReLUModel, self).__init__()
        self.qconfig = torch.quantization.get_default_qconfig(qengine)
        self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
        self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
        self.relu = nn.ReLU(inplace=True)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.dequant(x)
        return x

    def fuse_model(self):
        torch.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True)

class TwoLayerLinearModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
        self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)

    def forward(self, x):
        x = self.fc1(x)
        x = self.fc2(x)
        return x

class LinearModelWithSubmodule(nn.Module):
    def __init__(self):
        super(LinearModelWithSubmodule, self).__init__()
        self.subm = TwoLayerLinearModel()
        self.fc = nn.Linear(5, 5)

    def forward(self, x):
        x = self.subm(x)
        x = self.fc(x)
        return x

class AnnotatedTwoLayerLinearModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
        self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
        self.fc2.qconfig = torch.quantization.get_default_qconfig("fbgemm")

    def forward(self, x):
        x = self.fc1(x)
        x = self.fc2(x)
        return x

class ActivationsTestModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig("fbgemm")
        self.quant = torch.quantization.QuantStub()
        self.hardswish = torch.nn.Hardswish().to(dtype=torch.float)
        self.elu = torch.nn.ELU().to(dtype=torch.float)
        self.dequant = torch.quantization.DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.hardswish(x)
        x = self.elu(x)
        x = self.dequant(x)
        return x

class LinearReluModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        x = self.relu(self.fc(x))
        return x

class NormalizationTestModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.quant = torch.quantization.QuantStub()
        self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
        self.layer_norm = torch.nn.LayerNorm((8))
        self.group_norm = torch.nn.GroupNorm(2, 8)
        self.instance_norm1d = torch.nn.InstanceNorm1d(8)
        self.instance_norm2d = torch.nn.InstanceNorm2d(8)
        self.instance_norm3d = torch.nn.InstanceNorm3d(8)

    def forward(self, x):
        x = self.quant(x)
        x = self.fc1(x)
        x = self.layer_norm(x)
        x = self.group_norm(x.unsqueeze(-1))
        x = self.instance_norm1d(x)
        x = self.instance_norm2d(x.unsqueeze(-1))
        x = self.instance_norm3d(x.unsqueeze(-1))
        return x

class NestedModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.sub1 = LinearReluModel()
        self.sub2 = TwoLayerLinearModel()
        self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)

    def forward(self, x):
        x = self.sub1(x)
        x = self.sub2(x)
        x = self.fc3(x)
        return x

class AnnotatedNestedModel(torch.nn.Module):
    def __init__(self, qengine):
        super().__init__()
        self.sub1 = LinearReluModel()
        self.sub2 = TwoLayerLinearModel()
        self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
        self.fc3.qconfig = default_qconfig
        self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
        if qengine == 'fbgemm':
            self.sub2.fc1.qconfig = default_per_channel_qconfig
        else:
            self.sub2.fc1.qconfig = default_qconfig

    def forward(self, x):
        x = self.sub1(x)
        x = self.sub2(x)
        x = self.fc3(x)
        return x

class AnnotatedSubNestedModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.sub1 = LinearReluModel()
        self.sub2 = QuantWrapper(TwoLayerLinearModel())
        self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
        self.fc3.qconfig = default_qconfig
        self.sub2.qconfig = default_qconfig

    def forward(self, x):
        x = self.sub1(x)
        x = self.sub2(x)
        x = self.fc3(x)
        return x

class AnnotatedCustomConfigNestedModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.sub1 = LinearReluModel()
        self.sub2 = TwoLayerLinearModel()
        self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
        self.fc3.qconfig = default_qconfig
        self.sub2.qconfig = default_qconfig

        custom_options = {
            'dtype': torch.quint8,
            'qscheme': torch.per_tensor_affine
        }
        custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options),
                                 weight=default_weight_observer)
        self.sub2.fc1.qconfig = custom_qconfig

        self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
        self.sub2.fc2 = QuantWrapper(self.sub2.fc2)

    def forward(self, x):
        x = self.sub1(x)
        x = self.sub2(x)
        x = self.fc3(x)
        return x

class QuantSubModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.sub1 = LinearReluModel()
        self.sub2 = QuantWrapper(TwoLayerLinearModel())
        self.sub2.qconfig = default_qconfig
        self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
        self.fc3.qconfig = default_qconfig

    def forward(self, x):
        x = self.sub1(x)
        x = self.sub2(x)
        x = self.fc3(x)
        return x

class InnerModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
        self.relu1 = torch.nn.ReLU()
        self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
        self.relu2 = torch.nn.ReLU()

    def forward(self, x):
        return self.relu2(self.fc2(self.relu1(self.fc1(x))))

    def fuse_modules(self):
        fusable_layers = []
        named_children = list(self.named_children())
        for idx, (current_name, layer) in enumerate(named_children):
            if isinstance(layer, torch.nn.Linear):
                if idx >= len(named_children) - 1:
                    break
                if isinstance(named_children[idx + 1][1], torch.nn.ReLU):
                    fusable_layers.append([current_name,
                                           named_children[idx + 1][0]])
        torch.quantization.fuse_modules(self, fusable_layers, inplace=True)

class SkipQuantModel(torch.nn.Module):
    r"""We can skip quantization by explicitly
    setting qconfig of a submodule to None
    """
    def __init__(self):
        super().__init__()
        self.sub = InnerModule()
        self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)

    def forward(self, x):
        return self.fc(self.sub(x))

    def fuse_modules(self):
        self.sub.fuse_modules()

class AnnotatedSkipQuantModel(torch.nn.Module):
    r"""We can skip quantization by explicitly
    setting qconfig of a submodule to None
    """
    def __init__(self, qengine):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig(qengine)
        self.sub = QuantWrapper(InnerModule())
        self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
        # don't quantize this fc
        self.fc.qconfig = None

    def forward(self, x):
        return self.fc(self.sub(x))

    def fuse_modules(self):
        self.sub.module.fuse_modules()

class QuantStubModel(torch.nn.Module):
    r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
    """
    def __init__(self):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qconfig("qnnpack")
        self.quant = QuantStub()
        self.dequant = DeQuantStub()
        self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)

    def forward(self, x):
        x = self.quant(x)
        x = self.fc(x)
        return self.dequant(x)

class ManualLinearQATModel(torch.nn.Module):
    r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
    """
    def __init__(self, qengine):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qat_qconfig(qengine)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()
        self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
        self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)

    def forward(self, x):
        x = self.quant(x)
        x = self.fc1(x)
        x = self.fc2(x)
        return self.dequant(x)

class ManualConvLinearQATModel(torch.nn.Module):
    r"""A module with manually inserted `QuantStub` and `DeQuantStub`
    and contains both linear and conv modules
    """
    def __init__(self):
        super().__init__()
        self.qconfig = torch.quantization.get_default_qat_qconfig("qnnpack")
        self.quant = QuantStub()
        self.dequant = DeQuantStub()
        self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
        self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
        self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)

    def forward(self, x):
        x = self.quant(x)
        x = self.conv(x)
        x = x.view(-1, 64).contiguous()
        x = self.fc1(x)
        x = self.fc2(x)
        return self.dequant(x)


class SubModelForFusion(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
        self.bn = nn.BatchNorm2d(2).to(dtype=torch.float)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class SubModelWithoutFusion(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
        self.relu = nn.ReLU(inplace=False).to(dtype=torch.float)

    def forward(self, x):
        return self.relu(self.conv(x))

class ModelForFusion(nn.Module):
    def __init__(self, qconfig):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float)
        self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
        self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
        self.sub1 = SubModelForFusion()
        self.sub2 = SubModelWithoutFusion()
        self.fc = nn.Linear(36, 10).to(dtype=torch.float)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()
        self.qconfig = qconfig
        self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float)
        self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float)
        self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float)
        self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float)
        self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float)
        self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float)
        self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float)
        # don't quantize sub2
        self.sub2.qconfig = None
        self.fc.qconfig = None

    def forward(self, x):
        x = x.squeeze(2)
        x = self.quant(x)
        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu4(x)
        x = x.unsqueeze(2)
        y = x.unsqueeze(2)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
        x = self.sub1(x)
        x = self.dequant(x)
        x = self.sub2(x)
        x = x.view(-1, 36).contiguous()
        x = self.fc(x)
        y = self.conv2(y)
        y = self.relu2(y)
        y = self.bn2(y)
        y = self.relu3(y)
        y = self.dequant(y)
        return x

class ConvBNReLU(nn.Sequential):
    def __init__(self):
        super().__init__(
            nn.Conv2d(3, 3, 1, 1, bias=False),
            nn.BatchNorm2d(3),
            nn.ReLU(inplace=False)
        )

class ModelWithSequentialFusion(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, 1)
        self.relu1 = nn.ReLU(inplace=False)
        layers = []
        for i in range(3):
            layers.append(ConvBNReLU())
        self.features = nn.Sequential(*layers)
        head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
        self.classifier = nn.Sequential(*head)
        self.seq = nn.Sequential()
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.conv1(x)
        x = self.relu1(x)
        x = self.features(x)
        x = torch.reshape(x, (-1, 3 * 10 * 10))
        x = self.classifier(x)
        x = self.seq(x)
        x = self.dequant(x)
        return x

class ModelForFusionWithBias(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float)
        self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
        self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
        self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float)
        self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.dequant(x)
        return x

class DummyObserver(torch.nn.Module):
    def calculate_qparams(self):
        return 1.0, 0

    def forward(self, x):
        return x


class ModelWithFunctionals(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.mycat = nnq.FloatFunctional()
        self.myadd = nnq.FloatFunctional()
        self.myadd_relu = nnq.FloatFunctional()
        # Tracing doesnt work yet for c10 ops with scalar inputs
        # https://github.com/pytorch/pytorch/issues/27097
        # self.my_scalar_add = nnq.FloatFunctional()
        # self.my_scalar_mul = nnq.FloatFunctional()

    def forward(self, x):
        y = self.mycat.cat([x, x, x])
        z = self.myadd.add(y, y)
        w = self.myadd_relu.add_relu(z, z)
        # Tracing doesnt work yet for c10 ops with scalar inputs
        # https://github.com/pytorch/pytorch/issues/27097
        # w = self.my_scalar_add.add_scalar(w, -0.5)
        # w = self.my_scalar_mul.mul_scalar(w, 0.5)
        return w


class ResNetBase(torch.nn.Module):
    def __init__(self):
        super().__init__()
        norm_layer = nn.BatchNorm2d
        inplanes = 3
        self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
        self.bn1 = norm_layer(inplanes)
        self.relu1 = nn.ReLU()
        self.relu2 = nn.ReLU()
        self.downsample = torch.nn.Identity()
        self.myop = nn.quantized.FloatFunctional()
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))


    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        identity = self.downsample(x)
        out = self.myop.add(out, identity)
        out = self.relu2(out)
        out = self.avgpool(out)
        return out

class ModelMultipleOps(torch.nn.Module):
    def __init__(self):
        super().__init__()
        norm_layer = nn.BatchNorm2d
        inplanes = 3
        self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
        self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
        self.bn1 = norm_layer(inplanes)
        self.relu1 = nn.ReLU()
        self.relu2 = nn.ReLU()
        self.downsample = torch.nn.Identity()
        self.skip_add = nn.quantized.FloatFunctional()
        self.cat = nn.quantized.FloatFunctional()
        self.avgpool = nn.AdaptiveAvgPool2d((4, 4))
        self.fc = nn.Linear(12, 6)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        identity = self.downsample(x)
        out = self.skip_add.add(out, identity)
        out = self.relu2(out)
        out = self.avgpool(out)
        out = self.conv2(out)
        out = torch.nn.functional.max_pool2d(out, 2, 2)
        out = self.cat.cat([out, out])
        out = out.reshape(-1, 3 * 2 * 2)
        out = self.fc(out)
        return out

# Model to ensure consistency of fake quant with true quant
# Average pooling and mean operations are not modelled
# accurately with fake-quant so this model does not
# contain those operations
class ModelMultipleOpsNoAvgPool(torch.nn.Module):
    def __init__(self):
        super().__init__()
        norm_layer = nn.BatchNorm2d
        inplanes = 3
        self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
        self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
        self.bn1 = norm_layer(inplanes)
        self.relu1 = nn.ReLU()
        self.relu2 = nn.ReLU()
        self.skip_add = nn.quantized.FloatFunctional()
        self.cat = nn.quantized.FloatFunctional()
        self.maxpool = nn.MaxPool2d((4, 4))
        self.fc = nn.Linear(12, 6)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        skip = self.conv2(x)
        out = self.skip_add.add(out, skip)
        out = self.relu2(out)
        out = self.maxpool(out)
        out = self.conv2(out)
        out = torch.nn.functional.max_pool2d(out, 2, 2)
        out = self.cat.cat([out, out])
        out = out.reshape(-1, 3 * 2 * 2)
        out = self.fc(out)
        return out

class EmbeddingBagModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
                                         include_last_offset=True, scale_grad_by_freq=False, mode='sum')

    def forward(self, indices, offsets, per_sample_weights):
        return self.emb(indices, offsets, per_sample_weights)

class EmbeddingModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)

    def forward(self, indices):
        return self.emb(indices)

class EmbeddingWithLinear(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)
        self.fc = torch.nn.Linear(5, 5)
        self.emb.qconfig = float_qparams_dynamic_qconfig
        self.qconfig = default_qconfig

    def forward(self, indices, linear_in):
        return self.emb(indices), self.fc(linear_in)