1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
|
r"""Importing this file must **not** initialize CUDA context. test_distributed
relies on this assumption to properly run. This means that when this is imported
no CUDA calls shall be made, including torch.cuda.device_count(), etc.
torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported.
"""
import sys
import os
import platform
import re
import gc
import types
import math
from functools import partial
import inspect
import io
import operator
import argparse
import unittest
import warnings
import random
import contextlib
import socket
import subprocess
import time
from collections import OrderedDict
from contextlib import contextmanager
from functools import wraps
from itertools import product
from copy import deepcopy
from numbers import Number
import tempfile
import json
from urllib.request import urlopen
import __main__ # type: ignore[import]
import errno
from typing import cast, Any, Dict, Iterable, Optional
from torch.testing._internal import expecttest
from torch.testing import \
(_compare_tensors_internal, _compare_scalars_internal, _compare_return_type,
floating_types_and, integral_types, complex_types)
import torch
import torch.cuda
from torch._utils_internal import get_writable_path
from torch._six import string_classes
import torch.backends.cudnn
import torch.backends.mkl
from enum import Enum
from torch.autograd import gradcheck
from torch.autograd.gradcheck import gradgradcheck
torch.backends.disable_global_flags()
FILE_SCHEMA = "file://"
if sys.platform == 'win32':
FILE_SCHEMA = "file:///"
IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'
class ProfilingMode(Enum):
LEGACY = 1
SIMPLE = 2
PROFILING = 3
def cppProfilingFlagsToProfilingMode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._jit_set_profiling_mode(old_prof_mode_state)
if old_prof_exec_state:
if old_prof_mode_state:
return ProfilingMode.PROFILING
else:
return ProfilingMode.SIMPLE
else:
return ProfilingMode.LEGACY
@contextmanager
def enable_profiling_mode_for_profiling_tests():
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
try:
yield
finally:
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._jit_set_profiling_mode(old_prof_mode_state)
@contextmanager
def enable_profiling_mode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
try:
yield
finally:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._jit_set_profiling_mode(old_prof_mode_state)
@contextmanager
def num_profiled_runs(num_runs):
old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs)
try:
yield
finally:
torch._C._jit_set_num_profiled_runs(old_num_runs)
func_call = torch._C.ScriptFunction.__call__
meth_call = torch._C.ScriptMethod.__call__
def prof_callable(callable, *args, **kwargs):
if 'profile_and_replay' in kwargs:
del kwargs['profile_and_replay']
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
with enable_profiling_mode_for_profiling_tests():
callable(*args, **kwargs)
return callable(*args, **kwargs)
return callable(*args, **kwargs)
def prof_func_call(*args, **kwargs):
return prof_callable(func_call, *args, **kwargs)
def prof_meth_call(*args, **kwargs):
return prof_callable(meth_call, *args, **kwargs)
# TODO fix when https://github.com/python/mypy/issues/2427 is address
torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[assignment]
torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[assignment]
def _get_test_report_path():
# allow users to override the test file location. We need this
# because the distributed tests run the same test file multiple
# times with different configurations.
override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE')
test_source = override if override is not None else 'python-unittest'
return os.path.join('test-reports', test_source)
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--subprocess', action='store_true',
help='whether to run each test in a subprocess')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
parser.add_argument('--ge_config', type=str)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--test_bailouts', action='store_true')
parser.add_argument('--save-xml', nargs='?', type=str,
const=_get_test_report_path(),
default=_get_test_report_path() if bool(os.environ.get('IN_CIRCLECI')) else None)
parser.add_argument('--discover-tests', action='store_true')
parser.add_argument('--log-suffix', type=str, default="")
parser.add_argument('--run-parallel', type=int, default=1)
args, remaining = parser.parse_known_args()
if args.ge_config == 'legacy':
GRAPH_EXECUTOR = ProfilingMode.LEGACY
elif args.ge_config == 'profiling':
GRAPH_EXECUTOR = ProfilingMode.PROFILING
elif args.ge_config == 'simple':
GRAPH_EXECUTOR = ProfilingMode.SIMPLE
else:
# infer flags based on the default settings
GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode()
LOG_SUFFIX = args.log_suffix
RUN_PARALLEL = args.run_parallel
TEST_BAILOUTS = args.test_bailouts
TEST_DISCOVER = args.discover_tests
TEST_IN_SUBPROCESS = args.subprocess
TEST_SAVE_XML = args.save_xml
REPEAT_COUNT = args.repeat
SEED = args.seed
if not expecttest.ACCEPT:
expecttest.ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)
def wait_for_process(p):
try:
return p.wait()
except KeyboardInterrupt:
# Give `p` a chance to handle KeyboardInterrupt. Without this,
# `pytest` can't print errors it collected so far upon KeyboardInterrupt.
exit_status = p.wait(timeout=5)
if exit_status is not None:
return exit_status
else:
p.kill()
raise
except: # noqa E722, copied from python core library
p.kill()
raise
finally:
# Always call p.wait() to ensure exit
p.wait()
def shell(command, cwd=None, env=None):
sys.stdout.flush()
sys.stderr.flush()
# The following cool snippet is copied from Py3 core library subprocess.call
# only the with
# 1. `except KeyboardInterrupt` block added for SIGINT handling.
# 2. In Py2, subprocess.Popen doesn't return a context manager, so we do
# `p.wait()` in a `final` block for the code to be portable.
#
# https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323
assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens"
p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env)
return wait_for_process(p)
# Used to run the same test with different tensor types
def repeat_test_for_types(dtypes):
def repeat_helper(f):
@wraps(f)
def call_helper(self, *args):
for dtype in dtypes:
with TestCase.subTest(self, dtype=dtype):
f(self, *args, dtype=dtype)
return call_helper
return repeat_helper
# Environment variable `IS_PYTORCH_CI` is set in `.jenkins/common.sh`.
IS_PYTORCH_CI = bool(os.environ.get('IS_PYTORCH_CI'))
def discover_test_cases_recursively(suite_or_case):
if isinstance(suite_or_case, unittest.TestCase):
return [suite_or_case]
rc = []
for element in suite_or_case:
rc.extend(discover_test_cases_recursively(element))
return rc
def get_test_names(test_cases):
return ['.'.join(case.id().split('.')[-2:]) for case in test_cases]
def chunk_list(lst, nchunks):
return [lst[i::nchunks] for i in range(nchunks)]
def run_tests(argv=UNITTEST_ARGS):
if TEST_DISCOVER:
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
for name in get_test_names(test_cases):
print(name)
elif TEST_IN_SUBPROCESS:
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
failed_tests = []
for case in test_cases:
test_case_full_name = case.id().split('.', 1)[1]
exitcode = shell([sys.executable] + argv + [test_case_full_name])
if exitcode != 0:
failed_tests.append(test_case_full_name)
assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format(
len(failed_tests), '\n\t'.join(failed_tests))
elif RUN_PARALLEL > 1:
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL)
processes = []
for i in range(RUN_PARALLEL):
command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i]
processes.append(subprocess.Popen(command, universal_newlines=True))
failed = False
for p in processes:
failed |= wait_for_process(p) != 0
assert not failed, "Some test shards have failed"
elif TEST_SAVE_XML is not None:
# import here so that non-CI doesn't need xmlrunner installed
import xmlrunner # type: ignore[import]
test_report_path = TEST_SAVE_XML + LOG_SUFFIX
os.makedirs(test_report_path, exist_ok=True)
verbose = '--verbose' in argv or '-v' in argv
if verbose:
print('Test results will be stored in {}'.format(test_report_path))
unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(output=test_report_path, verbosity=2 if verbose else 1))
elif REPEAT_COUNT > 1:
for _ in range(REPEAT_COUNT):
if not unittest.main(exit=False, argv=argv).result.wasSuccessful():
sys.exit(-1)
else:
unittest.main(argv=argv)
IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
IS_PPC = platform.machine() == "ppc64le"
if IS_WINDOWS:
@contextmanager
def TemporaryFileName():
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually
f = tempfile.NamedTemporaryFile(delete=False)
try:
f.close()
yield f.name
finally:
os.unlink(f.name)
else:
@contextmanager # noqa: T484
def TemporaryFileName():
with tempfile.NamedTemporaryFile() as f:
yield f.name
def _check_module_exists(name):
r"""Returns if a top-level module with :attr:`name` exists *without**
importing it. This is generally safer than try-catch block around a
`import X`. It avoids third party libraries breaking assumptions of some of
our tests, e.g., setting multiprocessing start method when imported
(see librosa/#747, torchvision/#544).
"""
import importlib
import importlib.util
spec = importlib.util.find_spec(name)
return spec is not None
TEST_NUMPY = _check_module_exists('numpy')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
TEST_NUMBA = _check_module_exists('numba')
TEST_DILL = _check_module_exists('dill')
TEST_LIBROSA = _check_module_exists('librosa')
# Python 2.7 doesn't have spawn
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1'
TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1'
TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1'
TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1'
TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1'
# Enables tests that are slow to run (disabled by default)
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
# Disables non-slow tests (these tests enabled by default)
# This is usually used in conjunction with TEST_WITH_SLOW to
# run *only* slow tests. (I could have done an enum, but
# it felt a little awkward.
TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1'
if TEST_NUMPY:
import numpy as np
# Dict of NumPy dtype -> torch dtype (when the correspondence exists)
numpy_to_torch_dtype_dict = {
np.bool : torch.bool,
np.uint8 : torch.uint8,
np.int8 : torch.int8,
np.int16 : torch.int16,
np.int32 : torch.int32,
np.int64 : torch.int64,
np.float16 : torch.float16,
np.float32 : torch.float32,
np.float64 : torch.float64,
np.complex64 : torch.complex64,
np.complex128 : torch.complex128
}
# Dict of torch dtype -> NumPy dtype
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
ALL_TENSORTYPES = [torch.float,
torch.double,
torch.half]
# bfloat16 bringup is currently only available on ROCm
# ALL_TENSORTYPES2 will eventually be unified with ALL_TENSORTYPES
# when bfloat16 bringup is complete on all platforms
if TEST_WITH_ROCM:
ALL_TENSORTYPES2 = [torch.float,
torch.double,
torch.half,
torch.bfloat16]
else:
ALL_TENSORTYPES2 = ALL_TENSORTYPES
def skipIfRocm(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_ROCM:
raise unittest.SkipTest("test doesn't currently work on the ROCm stack")
else:
fn(*args, **kwargs)
return wrapper
# This decorator can be used for API tests that call torch.set_deterministic().
# When the test is finished, it will restore the previous deterministic flag
# setting. Also, if CUDA >= 10.2, this will set the environment variable
# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that setting
# is not thrown during the test unless the test changes that variable on purpose.
# The previous CUBLAS_WORKSPACE_CONFIG setting will also be restored once the
# test is finished.
def wrapDeterministicFlagAPITest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
deterministic_restore = torch.is_deterministic()
is_cuda10_2_or_higher = (
(torch.version.cuda is not None)
and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
if is_cuda10_2_or_higher:
cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'
cublas_config_restore = os.environ.get(cublas_var_name)
os.environ[cublas_var_name] = ':4096:8'
def restore():
torch.set_deterministic(deterministic_restore)
if is_cuda10_2_or_higher:
cur_cublas_config = os.environ.get(cublas_var_name)
if cublas_config_restore is None:
if cur_cublas_config is not None:
del os.environ[cublas_var_name]
else:
os.environ[cublas_var_name] = cublas_config_restore
try:
fn(*args, **kwargs)
except RuntimeError:
restore()
raise
else:
restore()
return wrapper
def skipIfCompiledWithoutNumpy(fn):
# Even if the numpy module is present, if `USE_NUMPY=0` is used during the
# build, numpy tests will fail
numpy_support = TEST_NUMPY
if numpy_support:
try:
# The numpy module is present, verify that PyTorch is compiled with
# numpy support
torch.from_numpy(np.array([2, 2]))
except RuntimeError:
numpy_support = False
@wraps(fn)
def wrapper(*args, **kwargs):
if not numpy_support:
raise unittest.SkipTest("PyTorch was compiled without numpy support")
else:
fn(*args, **kwargs)
return wrapper
def _test_function(fn, device):
def run_test_function(self):
return fn(self, device)
return run_test_function
def skipIfNoLapack(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not torch._C.has_lapack:
raise unittest.SkipTest('PyTorch compiled without Lapack')
else:
fn(*args, **kwargs)
return wrapper
def skipIfNotRegistered(op_name, message):
"""Wraps the decorator to hide the import of the `core`.
Args:
op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`.
message: message to fail with.
Usage:
@skipIfNotRegistered('MyOp', 'MyOp is not linked!')
This will check if 'MyOp' is in the caffe2.python.core
"""
try:
from caffe2.python import core
skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS,
message)
except ImportError:
skipper = unittest.skip("Cannot import `caffe2.python.core`")
return skipper
def skipIfNoSciPy(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_SCIPY:
raise unittest.SkipTest("test require SciPy, but SciPy not found")
else:
fn(*args, **kwargs)
return wrapper
def slowTest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_WITH_SLOW:
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
else:
fn(*args, **kwargs)
wrapper.__dict__['slow_test'] = True
return wrapper
def skipCUDAMemoryLeakCheckIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True
fn._do_cuda_memory_leak_check = not condition
return fn
return dec
def skipCUDANonDefaultStreamIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_non_default_stream', True): # if current True
fn._do_cuda_non_default_stream = not condition
return fn
return dec
def suppress_warnings(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fn(*args, **kwargs)
return wrapper
def get_cpu_type(type_name):
module, name = type_name.rsplit('.', 1)
assert module == 'torch.cuda'
return getattr(torch, name)
def get_gpu_type(type_name):
if isinstance(type_name, type):
type_name = '{}.{}'.format(type_name.__module__, type_name.__name__)
module, name = type_name.rsplit('.', 1)
assert module == 'torch'
return getattr(torch.cuda, name)
def to_gpu(obj, type_map=None):
if type_map is None:
type_map = {}
if isinstance(obj, torch.Tensor):
assert obj.is_leaf
t = type_map.get(obj.type(), get_gpu_type(obj.type()))
with torch.no_grad():
res = obj.clone().type(t)
res.requires_grad = obj.requires_grad
return res
elif torch.is_storage(obj):
return obj.new().resize_(obj.size()).copy_(obj)
elif isinstance(obj, list):
return [to_gpu(o, type_map) for o in obj]
elif isinstance(obj, tuple):
return tuple(to_gpu(o, type_map) for o in obj)
else:
return deepcopy(obj)
def get_function_arglist(func):
return inspect.getfullargspec(func).args
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
if TEST_NUMPY:
np.random.seed(seed)
@contextlib.contextmanager
def freeze_rng_state():
rng_state = torch.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
yield
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
torch.set_rng_state(rng_state)
@contextlib.contextmanager
def set_default_dtype(dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
yield
torch.set_default_dtype(saved_dtype)
def iter_indices(tensor):
if tensor.dim() == 0:
return range(0)
if tensor.dim() == 1:
return range(tensor.size(0))
return product(*(range(s) for s in tensor.size()))
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
class CudaNonDefaultStream():
def __enter__(self):
# Before starting CUDA test save currently active streams on all
# CUDA devices and set new non default streams to all CUDA devices
# to ensure CUDA tests do not use default stream by mistake.
beforeDevice = torch.cuda.current_device()
self.beforeStreams = []
for d in range(torch.cuda.device_count()):
self.beforeStreams.append(torch.cuda.current_stream(d))
deviceStream = torch.cuda.Stream(device=d)
torch._C._cuda_setStream(deviceStream._cdata)
torch._C._cuda_setDevice(beforeDevice)
def __exit__(self, exec_type, exec_value, traceback):
# After completing CUDA test load previously active streams on all
# CUDA devices.
beforeDevice = torch.cuda.current_device()
for d in range(torch.cuda.device_count()):
torch._C._cuda_setStream(self.beforeStreams[d]._cdata)
torch._C._cuda_setDevice(beforeDevice)
class CudaMemoryLeakCheck():
def __init__(self, testcase, name=None):
self.name = testcase.id() if name is None else name
self.testcase = testcase
# initialize context & RNG to prevent false positive detections
# when the test is the first to initialize those
from torch.testing._internal.common_cuda import initialize_cuda_context_rng
initialize_cuda_context_rng()
@staticmethod
def get_cuda_memory_usage():
# we don't need CUDA synchronize because the statistics are not tracked at
# actual freeing, but at when marking the block as free.
num_devices = torch.cuda.device_count()
gc.collect()
return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices))
def __enter__(self):
self.befores = self.get_cuda_memory_usage()
def __exit__(self, exec_type, exec_value, traceback):
# Don't check for leaks if an exception was thrown
if exec_type is not None:
return
afters = self.get_cuda_memory_usage()
for i, (before, after) in enumerate(zip(self.befores, afters)):
self.testcase.assertEqual(
before, after, msg='{} leaked {} bytes CUDA memory on device {}'.format(
self.name, after - before, i))
# "min_satisfying_examples" setting has been deprecated in hypythesis
# 3.56.0 and removed in hypothesis 4.x
try:
import hypothesis
def settings(*args, **kwargs):
if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
kwargs.pop('min_satisfying_examples')
return hypothesis.settings(*args, **kwargs)
hypothesis.settings.register_profile(
"pytorch_ci",
settings(
derandomize=True,
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=50,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"dev",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=10,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"debug",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=1000,
verbosity=hypothesis.Verbosity.verbose))
hypothesis.settings.load_profile(
"pytorch_ci" if IS_PYTORCH_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE',
'dev')
)
except ImportError:
print('Fail to import hypothesis in common_utils, tests are not derandomized')
disabled_test_from_issues: Optional[Dict[str, Any]] = None
def check_disabled(test_name):
global disabled_test_from_issues
if disabled_test_from_issues is None:
_disabled_test_from_issues: Dict = {}
def read_and_process():
url = 'https://raw.githubusercontent.com/zdevito/pytorch_disabled_tests/master/result.json'
contents = urlopen(url, timeout=1).read().decode('utf-8')
the_response = json.loads(contents)
for item in the_response['items']:
title = item['title']
key = 'DISABLED '
if title.startswith(key):
test_name = title[len(key):].strip()
_disabled_test_from_issues[test_name] = item['html_url']
if not IS_SANDCASTLE and os.getenv("PYTORCH_RUN_DISABLED_TESTS", "0") != "1":
try:
read_and_process()
disabled_test_from_issues = _disabled_test_from_issues
except Exception:
print("Couldn't download test skip set, leaving all tests enabled...")
disabled_test_from_issues = {}
if disabled_test_from_issues is not None:
if test_name in disabled_test_from_issues:
raise unittest.SkipTest(
"Test is disabled because an issue exists disabling it: {}".format(disabled_test_from_issues[test_name]) +
" To enable set the environment variable PYTORCH_RUN_DISABLED_TESTS=1")
# Acquires the comparison dtype, required since isclose
# requires both inputs have the same dtype, and isclose is not supported
# for some device x dtype combinations.
# NOTE: Remaps bfloat16 to float32 since neither the CPU or CUDA device types
# support needed bfloat16 comparison methods.
# NOTE: Remaps float16 to float32 on CPU since the CPU device type doesn't
# support needed float16 comparison methods.
# TODO: Update this once bfloat16 and float16 are better supported.
def get_comparison_dtype(a, b):
# TODO: update this when promote_types supports bfloat16 and/or
# isclose supports bfloat16.
a_dtype = torch.float32 if a.dtype is torch.bfloat16 else a.dtype
b_dtype = torch.float32 if b.dtype is torch.bfloat16 else b.dtype
compare_dtype = torch.promote_types(a_dtype, b_dtype)
# non-CUDA (CPU, for example) float16 -> float32
# TODO: update this when isclose is implemented for CPU float16
if (compare_dtype is torch.float16 and
(a.device != b.device or a.device.type != 'cuda' or
b.device.type != 'cuda')):
compare_dtype = torch.float32
return compare_dtype
class TestCase(expecttest.TestCase):
# NOTE: "precision" lets classes and generated tests set minimum
# atol values when comparing tensors. Used by @precisionOverride, for
# example.
# TODO: provide a better mechanism for generated tests to set rtol/atol.
_precision: float = 0
@property
def precision(self) -> float:
return self._precision
@precision.setter
def precision(self, prec: float) -> None:
self._precision = prec
_do_cuda_memory_leak_check = False
_do_cuda_non_default_stream = False
def __init__(self, method_name='runTest'):
super().__init__(method_name)
test_method = getattr(self, method_name, None)
if test_method is not None:
# Wraps the tested method if we should do CUDA memory check.
self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
# FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
if self._do_cuda_memory_leak_check and not IS_WINDOWS:
self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors)
# Wraps the tested method if we should enforce non default CUDA stream.
self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True)
if self._do_cuda_non_default_stream and not IS_WINDOWS and not TEST_WITH_ROCM:
self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream)
def assertLeaksNoCudaTensors(self, name=None):
name = self.id() if name is None else name
return CudaMemoryLeakCheck(self, name)
def enforceNonDefaultStream(self):
return CudaNonDefaultStream()
def wrap_with_cuda_policy(self, method_name, policy):
test_method = getattr(self, method_name)
# the import below may initialize CUDA context, so we do it only if
# self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream
# is True.
from torch.testing._internal.common_cuda import TEST_CUDA
fullname = self.id().lower() # class_name.method_name
if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
setattr(self, method_name, self.wrap_method_with_cuda_policy(test_method, policy))
def wrap_method_with_cuda_policy(self, method, policy):
# Assumes that `method` is the tested function in `self`.
# NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
# alive, so this cannot be done in setUp and tearDown because
# tearDown is run unconditionally no matter whether the test
# passes or not. For the same reason, we can't wrap the `method`
# call in try-finally and always do the check.
@wraps(method)
def wrapper(self, *args, **kwargs):
with policy():
method(*args, **kwargs)
return types.MethodType(wrapper, self)
def wrap_with_cuda_memory_check(self, method):
return self.wrap_method_with_cuda_policy(method, self.assertLeaksNoCudaTensors)
def setUp(self):
if TEST_SKIP_FAST:
if not getattr(self, self._testMethodName).__dict__.get('slow_test', False):
raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST")
check_disabled(str(self))
set_rng_seed(SEED)
def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device='cpu'):
# Assert not given impossible combination, where the sparse dims have
# empty numel, but nnz > 0 makes the indices containing values.
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
v_size = [nnz] + list(size[sparse_dim:])
v = torch.randn(*v_size, device=device)
i = torch.rand(sparse_dim, nnz, device=device)
i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
i = i.to(torch.long)
if is_uncoalesced:
v = torch.cat([v, torch.randn_like(v)], 0)
i = torch.cat([i, i], 1)
x = torch.sparse_coo_tensor(i, v, torch.Size(size))
if not is_uncoalesced:
x = x.coalesce()
else:
# FIXME: `x` is a sparse view of `v`. Currently rebase_history for
# sparse views is not implemented, so this workaround is
# needed for inplace operations done on `x`, e.g., copy_().
# Remove after implementing something equivalent to CopySlice
# for sparse views.
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
x = x.detach().clone()
return x, x._indices().clone(), x._values().clone()
def safeToDense(self, t):
r = self.safeCoalesce(t)
return r.to_dense()
def safeCoalesce(self, t):
tc = t.coalesce()
self.assertEqual(tc.to_dense(), t.to_dense())
self.assertTrue(tc.is_coalesced())
# Our code below doesn't work when nnz is 0, because
# then it's a 0D tensor, not a 2D tensor.
if t._nnz() == 0:
self.assertEqual(t._indices(), tc._indices())
self.assertEqual(t._values(), tc._values())
return tc
value_map: Dict[Any, Any] = {}
for idx, val in zip(t._indices().t(), t._values()):
idx_tup = tuple(idx.tolist())
if idx_tup in value_map:
value_map[idx_tup] += val
else:
value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val
new_indices = sorted(list(value_map.keys()))
_new_values = [value_map[idx] for idx in new_indices]
if t._values().ndimension() < 2:
new_values = t._values().new(_new_values)
else:
new_values = torch.stack(_new_values)
new_indices = t._indices().new(new_indices).t()
tg = t.new(new_indices, new_values, t.size())
self.assertEqual(tc._indices(), tg._indices())
self.assertEqual(tc._values(), tg._values())
if t.is_coalesced():
self.assertEqual(tc._indices(), t._indices())
self.assertEqual(tc._values(), t._values())
return tg
# Compares the given Torch and NumPy functions on the given tensor-like object.
# NOTE: both torch_fn and np_fn should be functions that take a single
# tensor (array). If the torch and/or NumPy function require additional
# arguments then wrap the function in a lambda or pass a partial function.
# TODO: support bfloat16 comparisons
# TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol)
def compare_with_numpy(self, torch_fn, np_fn, tensor_like,
device=None, dtype=None, **kwargs):
assert TEST_NUMPY
assert dtype is not torch.bfloat16
if isinstance(tensor_like, torch.Tensor):
assert device is None
assert dtype is None
a = tensor_like.detach().cpu().numpy()
t = tensor_like
else:
a = np.array(tensor_like, dtype=torch_to_numpy_dtype_dict[dtype])
t = torch.tensor(tensor_like, device=device, dtype=dtype)
np_result = np_fn(a)
torch_result = torch_fn(t).cpu()
# Converts arrays to tensors
if isinstance(np_result, np.ndarray):
try:
np_result = torch.from_numpy(np_result)
except Exception:
# NOTE: copying an array before conversion is necessary when,
# for example, the array has negative strides.
np_result = torch.from_numpy(np_result.copy())
self.assertEqual(np_result, torch_result, **kwargs)
# Some analysis of tolerance by logging tests from test_torch.py can be found
# in https://github.com/pytorch/pytorch/pull/32538.
# dtype name : (rtol, atol)
dtype_precisions = {
torch.float16 : (0.001, 1e-5),
torch.bfloat16 : (0.016, 1e-5),
torch.float32 : (1.3e-6, 1e-5),
torch.float64 : (1e-7, 1e-7),
torch.complex32 : (0.001, 1e-5),
torch.complex64 : (1.3e-6, 1e-5),
torch.complex128 : (1e-7, 1e-7),
}
# Returns the "default" rtol and atol for comparing scalars or
# tensors of the given dtypes.
def _getDefaultRtolAndAtol(self, dtype0, dtype1):
rtol = max(self.dtype_precisions.get(dtype0, (0, 0))[0],
self.dtype_precisions.get(dtype1, (0, 0))[0])
atol = max(self.dtype_precisions.get(dtype0, (0, 0))[1],
self.dtype_precisions.get(dtype1, (0, 0))[1])
return rtol, atol
# Checks if two dense tensors are equal(-ish), returning (True, None)
# when they are and (False, debug_msg) when they are not.
# If exact_dtype is true both tensors must have the same dtype.
# If exact_device is true both tensors must be on the same device.
# See the "Test Framework Tensor 'Equality'" note for more details.
# NOTE: tensors on different devices are moved to the CPU to be compared when
# exact_device is False.
# NOTE: this function checks the tensors' devices, sizes, and dtypes
# and acquires the appropriate device, dtype, rtol and atol to compare
# them with. It then calls _compare_tensors_internal.
def _compareTensors(self, a, b, *, rtol: Optional[float] = None, atol=None, equal_nan=True,
exact_dtype=True, exact_device=False) -> _compare_return_type:
assert (atol is None) == (rtol is None)
if not isinstance(a, torch.Tensor):
return (False, "argument a, {0}, to _compareTensors is not a tensor!".format(a))
if not isinstance(b, torch.Tensor):
return (False, "argument b, {0}, to _compareTensors is not a tensor!".format(b))
# Validates tensors are on the same device
if exact_device and a.device != b.device:
return (False, ("Attempted to compare equality of tensors on "
"different devices! Got devices {0} and "
"{1}.".format(a.device, b.device)))
# Compares tensors of different devices on the CPU
if a.device != b.device:
a = a.cpu()
b = b.cpu()
# Checks size matches
if a.size() != b.size():
return (False, ("Attempted to compare equality of tensors with "
"different sizes. Got sizes {0} and {1}.").format(a.size(), b.size()))
# Checks dtype (if exact_dtype)
if exact_dtype and a.dtype is not b.dtype:
return (False, ("Attempted to compare equality of tensors with "
"different dtypes. Got dtypes {0} and {1}.").format(a.dtype, b.dtype))
# Acquires rtol and atol
if rtol is None:
rtol, atol = self._getDefaultRtolAndAtol(a.dtype, b.dtype)
atol = max(atol, self.precision)
# Converts to comparison dtype
dtype = get_comparison_dtype(a, b)
a = a.to(dtype)
b = b.to(dtype)
return _compare_tensors_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
# Checks if two scalars are equal(-ish), returning (True, None)
# when they are and (False, debug_msg) when they are not.
# NOTE: this function just acquires rtol and atol
# before calling _compare_scalars_internal.
def _compareScalars(self, a, b, *,
rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan=True) -> _compare_return_type:
# Acquires rtol and atol
assert (atol is None) == (rtol is None)
if rtol is None:
if isinstance(a, complex) or isinstance(b, complex):
rtol, atol = self._getDefaultRtolAndAtol(torch.complex64, torch.complex64)
elif isinstance(a, float) or isinstance(b, float):
rtol, atol = self._getDefaultRtolAndAtol(torch.float32, torch.float32)
else:
rtol, atol = 0, 0
atol = max(atol, self.precision)
return _compare_scalars_internal(a, b, rtol=cast(float, rtol), atol=cast(float, atol), equal_nan=equal_nan)
def assertEqualIgnoreType(self, *args, **kwargs) -> None:
# If you are seeing this function used, that means test is written wrongly
# and deserves detailed investigation
return self.assertEqual(*args, exact_dtype=False, **kwargs)
# Compares x and y
# TODO: default exact_device to True
def assertEqual(self, x, y, msg: Optional[str] = None, *,
atol: Optional[float] = None, rtol: Optional[float] = None,
equal_nan=True, exact_dtype=True, exact_device=False) -> None:
assert (atol is None) == (rtol is None), "If one of atol or rtol is specified the other must be, too"
# Tensor x Number and Number x Tensor comparisons
if isinstance(x, torch.Tensor) and isinstance(y, Number):
self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(y, torch.Tensor) and isinstance(x, Number):
self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
# Tensor x np.bool
elif isinstance(x, torch.Tensor) and isinstance(y, np.bool_):
self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(y, torch.Tensor) and isinstance(x, np.bool_):
self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
# Tensor x Tensor
elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
super().assertEqual(x.is_sparse, y.is_sparse, msg=msg)
super().assertEqual(x.is_quantized, y.is_quantized, msg=msg)
if x.is_sparse:
x = self.safeCoalesce(x)
y = self.safeCoalesce(y)
indices_result, debug_msg = self._compareTensors(x._indices(), y._indices(),
rtol=rtol, atol=atol,
equal_nan=equal_nan, exact_dtype=exact_dtype,
exact_device=exact_device)
if not indices_result and msg is None:
assert debug_msg is not None
msg = "Sparse tensor indices failed to compare as equal! " + debug_msg
self.assertTrue(indices_result, msg=msg)
values_result, debug_msg = self._compareTensors(x._values(), y._values(),
rtol=rtol, atol=atol,
equal_nan=equal_nan, exact_dtype=exact_dtype,
exact_device=exact_device)
if not values_result and msg is None:
assert debug_msg is not None
msg = "Sparse tensor values failed to compare as equal! " + debug_msg
self.assertTrue(values_result, msg=msg)
elif x.is_quantized and y.is_quantized:
self.assertEqual(x.qscheme(), y.qscheme(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
if x.qscheme() == torch.per_tensor_affine:
self.assertEqual(x.q_scale(), y.q_scale(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
self.assertEqual(x.q_zero_point(), y.q_zero_point(),
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif x.qscheme() == torch.per_channel_affine:
self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
result, debug_msg = self._compareTensors(x.int_repr().to(torch.int32),
y.int_repr().to(torch.int32),
atol=atol, rtol=rtol,
exact_dtype=exact_dtype,
exact_device=exact_device)
if not result and msg is None:
assert debug_msg is not None
msg = "Quantized representations failed to compare as equal! " + debug_msg
self.assertTrue(result, msg=msg)
else:
result, debug_msg = self._compareTensors(x, y, rtol=rtol, atol=atol,
equal_nan=equal_nan, exact_dtype=exact_dtype,
exact_device=exact_device)
if not result and msg is None:
assert debug_msg is not None
msg = "Tensors failed to compare as equal! " + debug_msg
self.assertTrue(result, msg=msg)
elif isinstance(x, string_classes) and isinstance(y, string_classes):
super().assertEqual(x, y, msg=msg)
elif type(x) == set and type(y) == set:
super().assertEqual(x, y, msg=msg)
elif isinstance(x, dict) and isinstance(y, dict):
if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
self.assertEqual(x.items(), y.items(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
else:
self.assertEqual(set(x.keys()), set(y.keys()), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
key_list = list(x.keys())
self.assertEqual([x[k] for k in key_list],
[y[k] for k in key_list],
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(x, type) and isinstance(y, type):
# See TestTorch.test_assert_equal_generic_meta
super().assertEqual(x, y, msg=msg)
elif is_iterable(x) and is_iterable(y):
super().assertEqual(len(x), len(y), msg=msg)
for x_, y_ in zip(x, y):
self.assertEqual(x_, y_, atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(x, bool) and isinstance(y, bool):
self.assertTrue(x == y, msg=msg)
# Scalar x Scalar
elif isinstance(x, Number) and isinstance(y, Number):
result, debug_msg = self._compareScalars(x, y, rtol=rtol, atol=atol,
equal_nan=equal_nan)
if not result and msg is None:
assert debug_msg is not None
msg = "Scalars failed to compare as equal! " + debug_msg
self.assertTrue(result, msg=msg)
else:
super().assertEqual(x, y, msg=msg)
def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override]
atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None: # type: ignore[override]
with self.assertRaises(AssertionError, msg=msg):
self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs)
def assertEqualTypeString(self, x, y) -> None:
# This API is used simulate deprecated x.type() == y.type()
self.assertEqual(x.device, y.device)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x.is_sparse, y.is_sparse)
def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None:
for elem in iterable:
if id(obj) == id(elem):
return
raise AssertionError("object not found in iterable")
# TODO: Support context manager interface
# NB: The kwargs forwarding to callable robs the 'subname' parameter.
# If you need it, manually apply your callable in a lambda instead.
def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
subname = None
if 'subname' in kwargs:
subname = kwargs['subname']
del kwargs['subname']
try:
callable(*args, **kwargs)
except exc_type as e:
self.assertExpected(str(e), subname)
return
# Don't put this in the try block; the AssertionError will catch it
self.fail(msg="Did not raise when expected to")
def assertNotWarn(self, callable, msg=''):
r"""
Test if :attr:`callable` does not raise a warning.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
callable()
self.assertTrue(len(ws) == 0, msg)
@contextmanager
def maybeWarnsRegex(self, category, regex=''):
"""Context manager for code that *may* warn, e.g. ``TORCH_WARN_ONCE``.
This filters expected warnings from the test log and fails the test if
any unexpected warnings are caught.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
# Ignore expected warnings
warnings.filterwarnings("ignore", message=regex, category=category)
try:
yield
finally:
if len(ws) != 0:
msg = 'Caught unexpected warnings:\n'
for w in ws:
msg += warnings.formatwarning(
str(w.message), w.category, w.filename, w.lineno, w.line)
msg += '\n'
self.fail(msg)
def assertExpected(self, s, subname=None):
r"""
Test that a string matches the recorded contents of a file
derived from the name of this test and subname. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using --accept.
If you call this multiple times in a single function, you must
give a unique subname each time.
"""
if not isinstance(s, str):
raise TypeError("assertExpected is strings only")
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common_utils.py lives. This doesn't matter in
# PyTorch where all test scripts are in the same directory as
# test/common_utils.py, but it matters in onnx-pytorch
module_id = self.__class__.__module__
munged_id = remove_prefix(self.id(), module_id + ".")
test_file = os.path.realpath(sys.modules[module_id].__file__)
expected_file = os.path.join(os.path.dirname(test_file),
"expect",
munged_id)
subname_output = ""
if subname:
expected_file += "-" + subname
subname_output = " ({})".format(subname)
expected_file += ".expect"
expected = None
def accept_output(update_type):
print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s))
with open(expected_file, 'w') as f:
# Adjust for producer_version, leave s unmodified
s_tag = re.sub(r'(producer_version): "[0-9.]*"',
r'\1producer_version: "CURRENT_VERSION"', s)
f.write(s_tag)
try:
with open(expected_file) as f:
expected = f.read()
except IOError as e:
if e.errno != errno.ENOENT:
raise
elif expecttest.ACCEPT:
return accept_output("output")
else:
raise RuntimeError(
("I got this output for {}{}:\n\n{}\n\n"
"No expect file exists; to accept the current output, run:\n"
"python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None
# a hack for JIT tests
if IS_WINDOWS:
expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)
# Adjust for producer_version
expected = expected.replace(
'producer_version: "CURRENT_VERSION"',
'producer_version: "{}"'.format(torch.onnx.producer_version)
)
if expecttest.ACCEPT:
if expected != s:
return accept_output("updated output")
else:
if hasattr(self, "assertMultiLineEqual"):
# Python 2.7 only
# NB: Python considers lhs "old" and rhs "new".
self.assertMultiLineEqual(expected, s)
else:
self.assertEqual(s, expected)
def assertExpectedStripMangled(self, s, subname=None):
s = re.sub(r'__torch__[^ ]+', '', s)
self.assertExpected(s, subname)
# returns captured stderr
@staticmethod
def runWithPytorchAPIUsageStderr(code):
import subprocess
env = os.environ.copy()
env["PYTORCH_API_USAGE_STDERR"] = "1"
pipes = subprocess.Popen(
[sys.executable, '-c', code],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env)
return pipes.communicate()[1].decode('ascii')
if sys.version_info < (3, 2):
# assertRegexpMatches renamed to assertRegex in 3.2
assertRegex = unittest.TestCase.assertRegexpMatches
# assertRaisesRegexp renamed to assertRaisesRegex in 3.2
assertRaisesRegex = unittest.TestCase.assertRaisesRegexp
if sys.version_info < (3, 5):
# assertNotRegexpMatches renamed to assertNotRegex in 3.5
assertNotRegex = unittest.TestCase.assertNotRegexpMatches
def download_file(url, binary=True):
from urllib.parse import urlsplit
from urllib import request, error
filename = os.path.basename(urlsplit(url)[2])
data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
path = os.path.join(data_dir, filename)
if os.path.exists(path):
return path
try:
data = request.urlopen(url, timeout=15).read()
with open(path, 'wb' if binary else 'w') as f:
f.write(data)
return path
except error.URLError as e:
msg = "could not download test file '{}'".format(url)
warnings.warn(msg, RuntimeWarning)
raise unittest.SkipTest(msg) from e
def find_free_port():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('localhost', 0))
sockname = sock.getsockname()
sock.close()
return sockname[1]
# Errors that we can get in c10d initialization for which we should retry tests for.
ADDRESS_IN_USE = "Address already in use"
CONNECT_TIMEOUT = "connect() timed out."
def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)):
"""Reruns a test if the test returns a RuntimeError and the exception
matches exactly with one of the strings in connect_errors."""
# This if block is executed when using this function as a decorator with arguments.
if func is None:
return partial(retry_on_connect_failures, connect_errors=connect_errors)
@wraps(func)
def wrapper(*args, **kwargs):
tries_remaining = 10
while True:
try:
return func(*args, **kwargs)
except RuntimeError as error:
if str(error) in connect_errors:
tries_remaining -= 1
if tries_remaining == 0:
raise
time.sleep(random.random())
continue
raise
return wrapper
# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
def deco_retry(f):
@wraps(f)
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
while mtries > 1:
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
print(msg)
time.sleep(mdelay)
mtries -= 1
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e
return f_retry # true decorator
return deco_retry
# Methods for matrix and tensor generation
# Used in test_autograd.py and test_torch.py
def make_tensor(size, device: torch.device, dtype: torch.dtype, *,
low, high, requires_grad: bool = False) -> torch.Tensor:
"""Returns a tensor of the specified size on the given device and dtype.
The tensors values are between -9 and 9, inclusive, for most dtypes,
unless low (high) is not None in which case the values are between
max(-9, low) and min(9, high).
For unsigned types the values are between 0 and 9, and for complex
dtypes the real and imaginary parts are each between -9 and 9,
independently."""
assert low is None or low < 9, "low value too high!"
assert high is None or high > -9, "high value too low!"
if dtype is torch.bool:
return torch.randint(0, 2, size, device=device, dtype=dtype)
if dtype is torch.uint8:
low = math.floor(0 if low is None else max(low, 0))
high = math.ceil(10 if high is None else min(high, 10))
return torch.randint(low, high, size, device=device, dtype=dtype)
elif dtype in integral_types():
low = math.floor(-9 if low is None else max(low, -9))
high = math.ceil(10 if high is None else min(high, 10))
return torch.randint(low, high, size, device=device, dtype=dtype)
elif dtype in floating_types_and(torch.half, torch.bfloat16):
low = -9 if low is None else max(low, -9)
high = 9 if high is None else min(high, 10)
span = high - low
# Windows doesn't support torch.rand(bfloat16) on CUDA
if IS_WINDOWS and torch.device(device).type == 'cuda' and dtype is torch.bfloat16:
t = (torch.rand(size, device=device, dtype=torch.float32) * span + low).to(torch.bfloat16)
else:
t = torch.rand(size, device=device, dtype=dtype) * span + low
t.requires_grad = requires_grad
return t
else:
assert dtype in complex_types()
low = -9 if low is None else max(low, -9)
high = 9 if high is None else min(high, 10)
span = high - low
float_dtype = torch.float if dtype is torch.cfloat else torch.double
real = torch.rand(size, device=device, dtype=float_dtype) * span + low
imag = torch.rand(size, device=device, dtype=float_dtype) * span + low
c = torch.complex(real, imag)
c.requires_grad = requires_grad
return c
def prod_single_zero(dim_size):
result = torch.randn(dim_size, dim_size)
result[0, 1] = 0
return result
def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'):
assert rank <= l
A = torch.randn(l, l, dtype=dtype, device=device)
u, s, v = A.svd()
for i in range(l):
if i >= rank:
s[i] = 0
elif s[i] == 0:
s[i] = 1
return u.mm(torch.diag(s)).mm(v.transpose(0, 1))
def random_symmetric_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
A = (A + A.transpose(-2, -1)).div_(2)
return A
def random_symmetric_psd_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
return torch.matmul(A, A.transpose(-2, -1))
def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
dtype=dtype, device=device)
return torch.matmul(A, A.transpose(-2, -1)) \
+ torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5
def make_nonzero_det(A, sign=None, min_singular_value=0.1):
u, s, v = A.svd()
s.clamp_(min=min_singular_value)
A = torch.matmul(u, torch.matmul(torch.diag_embed(s), v.transpose(-2, -1)))
det = A.det()
if sign is not None:
if A.dim() == 2:
det = det.item()
if (det < 0) ^ (sign < 0):
A[0, :].neg_()
else:
cond = ((det < 0) ^ (sign < 0)).nonzero()
if cond.size(0) > 0:
for i in range(cond.size(0)):
A[list(cond[i])][0, :].neg_()
return A
def random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_dims,
**kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
silent = kwargs.get("silent", False)
if silent and not torch._C.has_lapack:
return torch.ones(matrix_size, matrix_size, dtype=dtype, device=device)
A = torch.randn(batch_dims + (matrix_size, matrix_size), dtype=dtype, device=device)
u, _, v = A.svd()
s = torch.arange(1., matrix_size + 1, dtype=dtype, device=device).mul_(1.0 / (matrix_size + 1)).diag()
return u.matmul(s.expand(batch_dims + (matrix_size, matrix_size)).matmul(v.transpose(-2, -1)))
def random_matrix(rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices.
Parameters:
dtype - the data type
device - the device kind
singular - when True, the output will be singular
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
silent = kwargs.get("silent", False)
singular = kwargs.get("singular", False)
if silent and not torch._C.has_lapack:
return torch.ones(rows, columns, dtype=dtype, device=device)
A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device)
u, _, v = A.svd(some=False)
s = torch.zeros(rows, columns, dtype=dtype, device=device)
k = min(rows, columns)
for i in range(k):
s[i, i] = float(i + 1) / (k + 1)
if singular:
# make matrix singular
s[k - 1, k - 1] = 0
if k > 2:
# increase the order of singularity so that the pivoting
# in LU factorization will be non-trivial
s[0, 0] = 0
return u.matmul(s.expand(batch_dims + (rows, columns)).matmul(v.transpose(-2, -1)))
def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices with
given rank.
"""
B = random_matrix(rows, rank, *batch_dims, **kwargs)
C = random_matrix(rank, columns, *batch_dims, **kwargs)
return B.matmul(C)
def random_sparse_matrix(rows, columns, density=0.01, **kwargs):
"""Return rectangular random sparse matrix within given density.
The density of the result approaches to given density as the size
of the matrix is increased and a relatively small value of density
is specified but higher than min(rows, columns)/(rows * columns)
for non-singular matrices.
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
singular = kwargs.get("singular", False)
k = min(rows, columns)
nonzero_elements = max(min(rows, columns), int(rows * columns * density))
row_indices = [i % rows for i in range(nonzero_elements)]
column_indices = [i % columns for i in range(nonzero_elements)]
random.shuffle(column_indices)
indices = [row_indices, column_indices]
values = torch.randn(nonzero_elements, dtype=dtype, device=device)
# ensure that the diagonal dominates
values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp()
indices_tensor = torch.tensor(indices)
A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device)
return A.coalesce()
def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs):
"""Return random sparse positive-definite matrix with given density.
The eigenvalues of the matrix are defined as::
arange(1, matrix_size+1)/matrix_size
Algorithm:
A = diag(arange(1, matrix_size+1)/matrix_size)
while <A density is smaller than required>:
<choose random i, j in range(matrix_size), theta in [0, 2*pi]>
R = <rotation matrix (i,j,theta)>
A = R^T A R
"""
import math
torch = kwargs.get('torch', globals()['torch'])
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
data = dict([((i, i), float(i + 1) / matrix_size)
for i in range(matrix_size)])
def multiply(data, N, i, j, cs, sn, left=True):
for k in range(N):
if left:
ik, jk = (k, i), (k, j)
else:
ik, jk = (i, k), (j, k)
aik, ajk = data.get(ik, 0), data.get(jk, 0)
aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk
if aik:
data[ik] = aik
else:
data.pop(ik, None)
if ajk:
data[jk] = ajk
else:
data.pop(jk, None)
target_nnz = density * matrix_size * matrix_size
while len(data) < target_nnz:
i = random.randint(0, matrix_size - 1)
j = random.randint(0, matrix_size - 1)
if i != j:
theta = random.uniform(0, 2 * math.pi)
cs = math.cos(theta)
sn = math.sin(theta)
multiply(data, matrix_size, i, j, cs, sn, left=True)
multiply(data, matrix_size, i, j, cs, sn, left=False)
icoords, jcoords, values = [], [], []
for (i, j), v in sorted(data.items()):
icoords.append(i)
jcoords.append(j)
values.append(v)
indices_tensor = torch.tensor([icoords, jcoords])
return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device)
def do_test_dtypes(self, dtypes, layout, device):
for dtype in dtypes:
if dtype != torch.float16:
out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
self.assertIs(dtype, out.dtype)
self.assertIs(layout, out.layout)
self.assertEqual(device, out.device)
def do_test_empty_full(self, dtypes, layout, device):
shape = torch.Size([2, 3])
def check_value(tensor, dtype, layout, device, value, requires_grad):
self.assertEqual(shape, tensor.shape)
self.assertIs(dtype, tensor.dtype)
self.assertIs(layout, tensor.layout)
self.assertEqual(tensor.requires_grad, requires_grad)
if tensor.is_cuda and device is not None:
self.assertEqual(device, tensor.device)
if value is not None:
fill = tensor.new(shape).fill_(value)
self.assertEqual(tensor, fill)
def get_int64_dtype(dtype):
module = '.'.join(str(dtype).split('.')[1:-1])
if not module:
return torch.int64
return operator.attrgetter(module)(torch).int64
default_dtype = torch.get_default_dtype()
check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False)
for dtype in dtypes:
for rg in {dtype.is_floating_point, False}:
int64_dtype = get_int64_dtype(dtype)
v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
check_value(v, dtype, layout, device, None, rg)
out = v.new()
check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, None, rg)
check_value(v.new_empty(shape), dtype, layout, device, None, False)
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
check_value(torch.empty_like(v), dtype, layout, device, None, False)
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
if dtype is not torch.float16 and layout != torch.sparse_coo:
fv = 3
v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
check_value(v, dtype, layout, device, fv, rg)
check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
out = v.new()
check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, fv + 2, rg)
check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 3, False)
check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
check_value(torch.full_like(v, fv + 5,
dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 5, False)
THESE_TAKE_WAY_TOO_LONG = {
'test_Conv3d_groups',
'test_conv_double_backward',
'test_conv_double_backward_groups',
'test_Conv3d_dilated',
'test_Conv3d_stride_padding',
'test_Conv3d_dilated_strided',
'test_Conv3d',
'test_Conv2d_dilated',
'test_ConvTranspose3d_dilated',
'test_ConvTranspose2d_dilated',
'test_snli',
'test_Conv2d',
'test_Conv2d_padding',
'test_ConvTranspose2d_no_bias',
'test_ConvTranspose2d',
'test_ConvTranspose3d',
'test_Conv2d_no_bias',
'test_matmul_4d_4d',
'test_multinomial_invalid_probs',
}
running_script_path = None
def set_running_script_path():
global running_script_path
try:
running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
if running_file.endswith('.py'): # skip if the running file is not a script
running_script_path = running_file
except Exception:
pass
def check_test_defined_in_running_script(test_case):
if running_script_path is None:
return
test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \
"is not defined in the running script \"{}\", but in \"{}\". Did you " \
"accidentally import a unittest.TestCase from another file?".format(
test_case.id(), running_script_path, test_case_class_file)
def load_tests(loader, tests, pattern):
set_running_script_path()
test_suite = unittest.TestSuite()
for test_group in tests:
for test in test_group:
check_test_defined_in_running_script(test)
test_suite.addTest(test)
return test_suite
class BytesIOContext(io.BytesIO):
def __enter__(self):
return self
def __exit__(self, *args):
pass
def _assertGradAndGradgradChecks(test_case, apply_fn, inputs):
# call assert function rather than returning a bool since it's nicer
# if we get whether this failed on the gradcheck or the gradgradcheck.
test_case.assertTrue(gradcheck(apply_fn, inputs))
test_case.assertTrue(gradgradcheck(apply_fn, inputs))
# Using @precisionOverride specific to your test is the recommended way
# of doing this. These are just some values that worked for test_nn.
dtype2prec_DONTUSE = {torch.float: 1e-5,
torch.double: 1e-5,
torch.half: 1e-2,
torch.bfloat16: 1e-1}
|