File: common_utils.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1818 lines) | stat: -rw-r--r-- 73,761 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
r"""Importing this file must **not** initialize CUDA context. test_distributed
relies on this assumption to properly run. This means that when this is imported
no CUDA calls shall be made, including torch.cuda.device_count(), etc.

torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported.
"""

import sys
import os
import platform
import re
import gc
import types
import math
from functools import partial
import inspect
import io
import operator
import argparse
import unittest
import warnings
import random
import contextlib
import socket
import subprocess
import time
from collections import OrderedDict
from contextlib import contextmanager
from functools import wraps
from itertools import product
from copy import deepcopy
from numbers import Number
import tempfile
import json
from urllib.request import urlopen
import __main__  # type: ignore[import]
import errno
from typing import cast, Any, Dict, Iterable, Optional

from torch.testing._internal import expecttest
from torch.testing import \
    (_compare_tensors_internal, _compare_scalars_internal, _compare_return_type,
     floating_types_and, integral_types, complex_types)

import torch
import torch.cuda
from torch._utils_internal import get_writable_path
from torch._six import string_classes
import torch.backends.cudnn
import torch.backends.mkl
from enum import Enum
from torch.autograd import gradcheck
from torch.autograd.gradcheck import gradgradcheck

torch.backends.disable_global_flags()

FILE_SCHEMA = "file://"
if sys.platform == 'win32':
    FILE_SCHEMA = "file:///"

IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'

class ProfilingMode(Enum):
    LEGACY = 1
    SIMPLE = 2
    PROFILING = 3

def cppProfilingFlagsToProfilingMode():
    old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
    old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
    torch._C._jit_set_profiling_executor(old_prof_exec_state)
    torch._C._jit_set_profiling_mode(old_prof_mode_state)

    if old_prof_exec_state:
        if old_prof_mode_state:
            return ProfilingMode.PROFILING
        else:
            return ProfilingMode.SIMPLE
    else:
        return ProfilingMode.LEGACY

@contextmanager
def enable_profiling_mode_for_profiling_tests():
    if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
        old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
        old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
    try:
        yield
    finally:
        if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
            torch._C._jit_set_profiling_executor(old_prof_exec_state)
            torch._C._jit_set_profiling_mode(old_prof_mode_state)

@contextmanager
def enable_profiling_mode():
    old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
    old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
    try:
        yield
    finally:
        torch._C._jit_set_profiling_executor(old_prof_exec_state)
        torch._C._jit_set_profiling_mode(old_prof_mode_state)

@contextmanager
def num_profiled_runs(num_runs):
    old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs)
    try:
        yield
    finally:
        torch._C._jit_set_num_profiled_runs(old_num_runs)

func_call = torch._C.ScriptFunction.__call__
meth_call = torch._C.ScriptMethod.__call__

def prof_callable(callable, *args, **kwargs):
    if 'profile_and_replay' in kwargs:
        del kwargs['profile_and_replay']
        if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
            with enable_profiling_mode_for_profiling_tests():
                callable(*args, **kwargs)
                return callable(*args, **kwargs)

    return callable(*args, **kwargs)

def prof_func_call(*args, **kwargs):
    return prof_callable(func_call, *args, **kwargs)

def prof_meth_call(*args, **kwargs):
    return prof_callable(meth_call, *args, **kwargs)

# TODO fix when https://github.com/python/mypy/issues/2427 is address
torch._C.ScriptFunction.__call__ = prof_func_call  # type: ignore[assignment]
torch._C.ScriptMethod.__call__ = prof_meth_call  # type: ignore[assignment]

def _get_test_report_path():
    # allow users to override the test file location. We need this
    # because the distributed tests run the same test file multiple
    # times with different configurations.
    override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE')
    test_source = override if override is not None else 'python-unittest'
    return os.path.join('test-reports', test_source)


parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--subprocess', action='store_true',
                    help='whether to run each test in a subprocess')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
parser.add_argument('--ge_config', type=str)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--test_bailouts', action='store_true')
parser.add_argument('--save-xml', nargs='?', type=str,
                    const=_get_test_report_path(),
                    default=_get_test_report_path() if bool(os.environ.get('IN_CIRCLECI')) else None)
parser.add_argument('--discover-tests', action='store_true')
parser.add_argument('--log-suffix', type=str, default="")
parser.add_argument('--run-parallel', type=int, default=1)

args, remaining = parser.parse_known_args()
if args.ge_config == 'legacy':
    GRAPH_EXECUTOR = ProfilingMode.LEGACY
elif args.ge_config == 'profiling':
    GRAPH_EXECUTOR = ProfilingMode.PROFILING
elif args.ge_config == 'simple':
    GRAPH_EXECUTOR = ProfilingMode.SIMPLE
else:
    # infer flags based on the default settings
    GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode()


LOG_SUFFIX = args.log_suffix
RUN_PARALLEL = args.run_parallel
TEST_BAILOUTS = args.test_bailouts
TEST_DISCOVER = args.discover_tests
TEST_IN_SUBPROCESS = args.subprocess
TEST_SAVE_XML = args.save_xml
REPEAT_COUNT = args.repeat
SEED = args.seed
if not expecttest.ACCEPT:
    expecttest.ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)

def wait_for_process(p):
    try:
        return p.wait()
    except KeyboardInterrupt:
        # Give `p` a chance to handle KeyboardInterrupt. Without this,
        # `pytest` can't print errors it collected so far upon KeyboardInterrupt.
        exit_status = p.wait(timeout=5)
        if exit_status is not None:
            return exit_status
        else:
            p.kill()
            raise
    except:  # noqa E722, copied from python core library
        p.kill()
        raise
    finally:
        # Always call p.wait() to ensure exit
        p.wait()

def shell(command, cwd=None, env=None):
    sys.stdout.flush()
    sys.stderr.flush()
    # The following cool snippet is copied from Py3 core library subprocess.call
    # only the with
    #   1. `except KeyboardInterrupt` block added for SIGINT handling.
    #   2. In Py2, subprocess.Popen doesn't return a context manager, so we do
    #      `p.wait()` in a `final` block for the code to be portable.
    #
    # https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323
    assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens"
    p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env)
    return wait_for_process(p)


# Used to run the same test with different tensor types
def repeat_test_for_types(dtypes):
    def repeat_helper(f):
        @wraps(f)
        def call_helper(self, *args):
            for dtype in dtypes:
                with TestCase.subTest(self, dtype=dtype):
                    f(self, *args, dtype=dtype)

        return call_helper
    return repeat_helper

# Environment variable `IS_PYTORCH_CI` is set in `.jenkins/common.sh`.
IS_PYTORCH_CI = bool(os.environ.get('IS_PYTORCH_CI'))


def discover_test_cases_recursively(suite_or_case):
    if isinstance(suite_or_case, unittest.TestCase):
        return [suite_or_case]
    rc = []
    for element in suite_or_case:
        rc.extend(discover_test_cases_recursively(element))
    return rc

def get_test_names(test_cases):
    return ['.'.join(case.id().split('.')[-2:]) for case in test_cases]

def chunk_list(lst, nchunks):
    return [lst[i::nchunks] for i in range(nchunks)]


def run_tests(argv=UNITTEST_ARGS):
    if TEST_DISCOVER:
        suite = unittest.TestLoader().loadTestsFromModule(__main__)
        test_cases = discover_test_cases_recursively(suite)
        for name in get_test_names(test_cases):
            print(name)
    elif TEST_IN_SUBPROCESS:
        suite = unittest.TestLoader().loadTestsFromModule(__main__)
        test_cases = discover_test_cases_recursively(suite)
        failed_tests = []
        for case in test_cases:
            test_case_full_name = case.id().split('.', 1)[1]
            exitcode = shell([sys.executable] + argv + [test_case_full_name])
            if exitcode != 0:
                failed_tests.append(test_case_full_name)

        assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format(
            len(failed_tests), '\n\t'.join(failed_tests))
    elif RUN_PARALLEL > 1:
        suite = unittest.TestLoader().loadTestsFromModule(__main__)
        test_cases = discover_test_cases_recursively(suite)
        test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL)
        processes = []
        for i in range(RUN_PARALLEL):
            command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i]
            processes.append(subprocess.Popen(command, universal_newlines=True))
        failed = False
        for p in processes:
            failed |= wait_for_process(p) != 0
        assert not failed, "Some test shards have failed"
    elif TEST_SAVE_XML is not None:
        # import here so that non-CI doesn't need xmlrunner installed
        import xmlrunner  # type: ignore[import]
        test_report_path = TEST_SAVE_XML + LOG_SUFFIX
        os.makedirs(test_report_path, exist_ok=True)
        verbose = '--verbose' in argv or '-v' in argv
        if verbose:
            print('Test results will be stored in {}'.format(test_report_path))
        unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(output=test_report_path, verbosity=2 if verbose else 1))
    elif REPEAT_COUNT > 1:
        for _ in range(REPEAT_COUNT):
            if not unittest.main(exit=False, argv=argv).result.wasSuccessful():
                sys.exit(-1)
    else:
        unittest.main(argv=argv)

IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
IS_PPC = platform.machine() == "ppc64le"

if IS_WINDOWS:
    @contextmanager
    def TemporaryFileName():
        # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
        # opens the file, and it cannot be opened multiple times in Windows. To support Windows,
        # close the file after creation and try to remove it manually
        f = tempfile.NamedTemporaryFile(delete=False)
        try:
            f.close()
            yield f.name
        finally:
            os.unlink(f.name)
else:
    @contextmanager  # noqa: T484
    def TemporaryFileName():
        with tempfile.NamedTemporaryFile() as f:
            yield f.name


def _check_module_exists(name):
    r"""Returns if a top-level module with :attr:`name` exists *without**
    importing it. This is generally safer than try-catch block around a
    `import X`. It avoids third party libraries breaking assumptions of some of
    our tests, e.g., setting multiprocessing start method when imported
    (see librosa/#747, torchvision/#544).
    """
    import importlib
    import importlib.util
    spec = importlib.util.find_spec(name)
    return spec is not None

TEST_NUMPY = _check_module_exists('numpy')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
TEST_NUMBA = _check_module_exists('numba')

TEST_DILL = _check_module_exists('dill')

TEST_LIBROSA = _check_module_exists('librosa')

# Python 2.7 doesn't have spawn
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1'
TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1'
TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1'
TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1'
TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1'
# Enables tests that are slow to run (disabled by default)
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'

# Disables non-slow tests (these tests enabled by default)
# This is usually used in conjunction with TEST_WITH_SLOW to
# run *only* slow tests.  (I could have done an enum, but
# it felt a little awkward.
TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1'

if TEST_NUMPY:
    import numpy as np

    # Dict of NumPy dtype -> torch dtype (when the correspondence exists)
    numpy_to_torch_dtype_dict = {
        np.bool       : torch.bool,
        np.uint8      : torch.uint8,
        np.int8       : torch.int8,
        np.int16      : torch.int16,
        np.int32      : torch.int32,
        np.int64      : torch.int64,
        np.float16    : torch.float16,
        np.float32    : torch.float32,
        np.float64    : torch.float64,
        np.complex64  : torch.complex64,
        np.complex128 : torch.complex128
    }

    # Dict of torch dtype -> NumPy dtype
    torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}

ALL_TENSORTYPES = [torch.float,
                   torch.double,
                   torch.half]

# bfloat16 bringup is currently only available on ROCm
# ALL_TENSORTYPES2 will eventually be unified with ALL_TENSORTYPES
# when bfloat16 bringup is complete on all platforms
if TEST_WITH_ROCM:
    ALL_TENSORTYPES2 = [torch.float,
                        torch.double,
                        torch.half,
                        torch.bfloat16]
else:
    ALL_TENSORTYPES2 = ALL_TENSORTYPES

def skipIfRocm(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if TEST_WITH_ROCM:
            raise unittest.SkipTest("test doesn't currently work on the ROCm stack")
        else:
            fn(*args, **kwargs)
    return wrapper

# This decorator can be used for API tests that call torch.set_deterministic().
# When the test is finished, it will restore the previous deterministic flag
# setting. Also, if CUDA >= 10.2, this will set the environment variable
# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that setting
# is not thrown during the test unless the test changes that variable on purpose.
# The previous CUBLAS_WORKSPACE_CONFIG setting will also be restored once the
# test is finished.
def wrapDeterministicFlagAPITest(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        deterministic_restore = torch.is_deterministic()

        is_cuda10_2_or_higher = (
            (torch.version.cuda is not None)
            and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))

        if is_cuda10_2_or_higher:
            cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'
            cublas_config_restore = os.environ.get(cublas_var_name)
            os.environ[cublas_var_name] = ':4096:8'

        def restore():
            torch.set_deterministic(deterministic_restore)
            if is_cuda10_2_or_higher:
                cur_cublas_config = os.environ.get(cublas_var_name)
                if cublas_config_restore is None:
                    if cur_cublas_config is not None:
                        del os.environ[cublas_var_name]
                else:
                    os.environ[cublas_var_name] = cublas_config_restore
        try:
            fn(*args, **kwargs)
        except RuntimeError:
            restore()
            raise
        else:
            restore()
    return wrapper

def skipIfCompiledWithoutNumpy(fn):
    # Even if the numpy module is present, if `USE_NUMPY=0` is used during the
    # build, numpy tests will fail
    numpy_support = TEST_NUMPY
    if numpy_support:
        try:
            # The numpy module is present, verify that PyTorch is compiled with
            # numpy support
            torch.from_numpy(np.array([2, 2]))
        except RuntimeError:
            numpy_support = False

    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not numpy_support:
            raise unittest.SkipTest("PyTorch was compiled without numpy support")
        else:
            fn(*args, **kwargs)
    return wrapper

def _test_function(fn, device):
    def run_test_function(self):
        return fn(self, device)
    return run_test_function


def skipIfNoLapack(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not torch._C.has_lapack:
            raise unittest.SkipTest('PyTorch compiled without Lapack')
        else:
            fn(*args, **kwargs)
    return wrapper


def skipIfNotRegistered(op_name, message):
    """Wraps the decorator to hide the import of the `core`.

    Args:
        op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`.
        message: message to fail with.

    Usage:
        @skipIfNotRegistered('MyOp', 'MyOp is not linked!')
            This will check if 'MyOp' is in the caffe2.python.core
    """
    try:
        from caffe2.python import core
        skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS,
                                  message)
    except ImportError:
        skipper = unittest.skip("Cannot import `caffe2.python.core`")
    return skipper


def skipIfNoSciPy(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not TEST_SCIPY:
            raise unittest.SkipTest("test require SciPy, but SciPy not found")
        else:
            fn(*args, **kwargs)
    return wrapper


def slowTest(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not TEST_WITH_SLOW:
            raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
        else:
            fn(*args, **kwargs)
    wrapper.__dict__['slow_test'] = True
    return wrapper


def skipCUDAMemoryLeakCheckIf(condition):
    def dec(fn):
        if getattr(fn, '_do_cuda_memory_leak_check', True):  # if current True
            fn._do_cuda_memory_leak_check = not condition
        return fn
    return dec

def skipCUDANonDefaultStreamIf(condition):
    def dec(fn):
        if getattr(fn, '_do_cuda_non_default_stream', True):  # if current True
            fn._do_cuda_non_default_stream = not condition
        return fn
    return dec

def suppress_warnings(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            fn(*args, **kwargs)
    return wrapper


def get_cpu_type(type_name):
    module, name = type_name.rsplit('.', 1)
    assert module == 'torch.cuda'
    return getattr(torch, name)


def get_gpu_type(type_name):
    if isinstance(type_name, type):
        type_name = '{}.{}'.format(type_name.__module__, type_name.__name__)
    module, name = type_name.rsplit('.', 1)
    assert module == 'torch'
    return getattr(torch.cuda, name)


def to_gpu(obj, type_map=None):
    if type_map is None:
        type_map = {}
    if isinstance(obj, torch.Tensor):
        assert obj.is_leaf
        t = type_map.get(obj.type(), get_gpu_type(obj.type()))
        with torch.no_grad():
            res = obj.clone().type(t)
            res.requires_grad = obj.requires_grad
        return res
    elif torch.is_storage(obj):
        return obj.new().resize_(obj.size()).copy_(obj)
    elif isinstance(obj, list):
        return [to_gpu(o, type_map) for o in obj]
    elif isinstance(obj, tuple):
        return tuple(to_gpu(o, type_map) for o in obj)
    else:
        return deepcopy(obj)


def get_function_arglist(func):
    return inspect.getfullargspec(func).args


def set_rng_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)
    if TEST_NUMPY:
        np.random.seed(seed)


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)

@contextlib.contextmanager
def set_default_dtype(dtype):
    saved_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    yield
    torch.set_default_dtype(saved_dtype)

def iter_indices(tensor):
    if tensor.dim() == 0:
        return range(0)
    if tensor.dim() == 1:
        return range(tensor.size(0))
    return product(*(range(s) for s in tensor.size()))


def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False

class CudaNonDefaultStream():
    def __enter__(self):
        # Before starting CUDA test save currently active streams on all
        # CUDA devices and set new non default streams to all CUDA devices
        # to ensure CUDA tests do not use default stream by mistake.
        beforeDevice = torch.cuda.current_device()
        self.beforeStreams = []
        for d in range(torch.cuda.device_count()):
            self.beforeStreams.append(torch.cuda.current_stream(d))
            deviceStream = torch.cuda.Stream(device=d)
            torch._C._cuda_setStream(deviceStream._cdata)
        torch._C._cuda_setDevice(beforeDevice)

    def __exit__(self, exec_type, exec_value, traceback):
        # After completing CUDA test load previously active streams on all
        # CUDA devices.
        beforeDevice = torch.cuda.current_device()
        for d in range(torch.cuda.device_count()):
            torch._C._cuda_setStream(self.beforeStreams[d]._cdata)
        torch._C._cuda_setDevice(beforeDevice)

class CudaMemoryLeakCheck():
    def __init__(self, testcase, name=None):
        self.name = testcase.id() if name is None else name
        self.testcase = testcase

        # initialize context & RNG to prevent false positive detections
        # when the test is the first to initialize those
        from torch.testing._internal.common_cuda import initialize_cuda_context_rng
        initialize_cuda_context_rng()

    @staticmethod
    def get_cuda_memory_usage():
        # we don't need CUDA synchronize because the statistics are not tracked at
        # actual freeing, but at when marking the block as free.
        num_devices = torch.cuda.device_count()
        gc.collect()
        return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices))

    def __enter__(self):
        self.befores = self.get_cuda_memory_usage()

    def __exit__(self, exec_type, exec_value, traceback):
        # Don't check for leaks if an exception was thrown
        if exec_type is not None:
            return

        afters = self.get_cuda_memory_usage()

        for i, (before, after) in enumerate(zip(self.befores, afters)):
            self.testcase.assertEqual(
                before, after, msg='{} leaked {} bytes CUDA memory on device {}'.format(
                    self.name, after - before, i))

#  "min_satisfying_examples" setting has been deprecated in hypythesis
#  3.56.0 and removed in hypothesis 4.x
try:
    import hypothesis

    def settings(*args, **kwargs):
        if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
            kwargs.pop('min_satisfying_examples')
        return hypothesis.settings(*args, **kwargs)


    hypothesis.settings.register_profile(
        "pytorch_ci",
        settings(
            derandomize=True,
            suppress_health_check=[hypothesis.HealthCheck.too_slow],
            database=None,
            max_examples=50,
            verbosity=hypothesis.Verbosity.normal))
    hypothesis.settings.register_profile(
        "dev",
        settings(
            suppress_health_check=[hypothesis.HealthCheck.too_slow],
            database=None,
            max_examples=10,
            verbosity=hypothesis.Verbosity.normal))
    hypothesis.settings.register_profile(
        "debug",
        settings(
            suppress_health_check=[hypothesis.HealthCheck.too_slow],
            database=None,
            max_examples=1000,
            verbosity=hypothesis.Verbosity.verbose))

    hypothesis.settings.load_profile(
        "pytorch_ci" if IS_PYTORCH_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE',
                                                     'dev')
    )
except ImportError:
    print('Fail to import hypothesis in common_utils, tests are not derandomized')

disabled_test_from_issues: Optional[Dict[str, Any]] = None
def check_disabled(test_name):
    global disabled_test_from_issues
    if disabled_test_from_issues is None:
        _disabled_test_from_issues: Dict = {}

        def read_and_process():
            url = 'https://raw.githubusercontent.com/zdevito/pytorch_disabled_tests/master/result.json'
            contents = urlopen(url, timeout=1).read().decode('utf-8')
            the_response = json.loads(contents)
            for item in the_response['items']:
                title = item['title']
                key = 'DISABLED '
                if title.startswith(key):
                    test_name = title[len(key):].strip()
                    _disabled_test_from_issues[test_name] = item['html_url']

        if not IS_SANDCASTLE and os.getenv("PYTORCH_RUN_DISABLED_TESTS", "0") != "1":
            try:
                read_and_process()
                disabled_test_from_issues = _disabled_test_from_issues
            except Exception:
                print("Couldn't download test skip set, leaving all tests enabled...")
                disabled_test_from_issues = {}

    if disabled_test_from_issues is not None:
        if test_name in disabled_test_from_issues:
            raise unittest.SkipTest(
                "Test is disabled because an issue exists disabling it: {}".format(disabled_test_from_issues[test_name]) +
                " To enable set the environment variable PYTORCH_RUN_DISABLED_TESTS=1")

# Acquires the comparison dtype, required since isclose
# requires both inputs have the same dtype, and isclose is not supported
# for some device x dtype combinations.
# NOTE: Remaps bfloat16 to float32 since neither the CPU or CUDA device types
#  support needed bfloat16 comparison methods.
# NOTE: Remaps float16 to float32 on CPU since the CPU device type doesn't
#   support needed float16 comparison methods.
# TODO: Update this once bfloat16 and float16 are better supported.
def get_comparison_dtype(a, b):
    # TODO: update this when promote_types supports bfloat16 and/or
    # isclose supports bfloat16.
    a_dtype = torch.float32 if a.dtype is torch.bfloat16 else a.dtype
    b_dtype = torch.float32 if b.dtype is torch.bfloat16 else b.dtype

    compare_dtype = torch.promote_types(a_dtype, b_dtype)

    # non-CUDA (CPU, for example) float16 -> float32
    # TODO: update this when isclose is implemented for CPU float16
    if (compare_dtype is torch.float16 and
        (a.device != b.device or a.device.type != 'cuda' or
            b.device.type != 'cuda')):
        compare_dtype = torch.float32

    return compare_dtype

class TestCase(expecttest.TestCase):
    # NOTE: "precision" lets classes and generated tests set minimum
    # atol values when comparing tensors. Used by @precisionOverride, for
    # example.
    # TODO: provide a better mechanism for generated tests to set rtol/atol.
    _precision: float = 0

    @property
    def precision(self) -> float:
        return self._precision

    @precision.setter
    def precision(self, prec: float) -> None:
        self._precision = prec

    _do_cuda_memory_leak_check = False
    _do_cuda_non_default_stream = False

    def __init__(self, method_name='runTest'):
        super().__init__(method_name)

        test_method = getattr(self, method_name, None)
        if test_method is not None:
            # Wraps the tested method if we should do CUDA memory check.
            self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
            # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
            if self._do_cuda_memory_leak_check and not IS_WINDOWS:
                self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors)

            # Wraps the tested method if we should enforce non default CUDA stream.
            self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True)
            if self._do_cuda_non_default_stream and not IS_WINDOWS and not TEST_WITH_ROCM:
                self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream)

    def assertLeaksNoCudaTensors(self, name=None):
        name = self.id() if name is None else name
        return CudaMemoryLeakCheck(self, name)

    def enforceNonDefaultStream(self):
        return CudaNonDefaultStream()

    def wrap_with_cuda_policy(self, method_name, policy):
        test_method = getattr(self, method_name)
        # the import below may initialize CUDA context, so we do it only if
        # self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream
        # is True.
        from torch.testing._internal.common_cuda import TEST_CUDA
        fullname = self.id().lower()  # class_name.method_name
        if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
            setattr(self, method_name, self.wrap_method_with_cuda_policy(test_method, policy))

    def wrap_method_with_cuda_policy(self, method, policy):
        # Assumes that `method` is the tested function in `self`.
        # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
        #       alive, so this cannot be done in setUp and tearDown because
        #       tearDown is run unconditionally no matter whether the test
        #       passes or not. For the same reason, we can't wrap the `method`
        #       call in try-finally and always do the check.
        @wraps(method)
        def wrapper(self, *args, **kwargs):
            with policy():
                method(*args, **kwargs)
        return types.MethodType(wrapper, self)

    def wrap_with_cuda_memory_check(self, method):
        return self.wrap_method_with_cuda_policy(method, self.assertLeaksNoCudaTensors)


    def setUp(self):


        if TEST_SKIP_FAST:
            if not getattr(self, self._testMethodName).__dict__.get('slow_test', False):
                raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST")
        check_disabled(str(self))

        set_rng_seed(SEED)

    def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device='cpu'):
        # Assert not given impossible combination, where the sparse dims have
        # empty numel, but nnz > 0 makes the indices containing values.
        assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'

        v_size = [nnz] + list(size[sparse_dim:])
        v = torch.randn(*v_size, device=device)
        i = torch.rand(sparse_dim, nnz, device=device)
        i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
        i = i.to(torch.long)
        if is_uncoalesced:
            v = torch.cat([v, torch.randn_like(v)], 0)
            i = torch.cat([i, i], 1)

        x = torch.sparse_coo_tensor(i, v, torch.Size(size))

        if not is_uncoalesced:
            x = x.coalesce()
        else:
            # FIXME: `x` is a sparse view of `v`. Currently rebase_history for
            #        sparse views is not implemented, so this workaround is
            #        needed for inplace operations done on `x`, e.g., copy_().
            #        Remove after implementing something equivalent to CopySlice
            #        for sparse views.
            # NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
            x = x.detach().clone()
        return x, x._indices().clone(), x._values().clone()

    def safeToDense(self, t):
        r = self.safeCoalesce(t)
        return r.to_dense()

    def safeCoalesce(self, t):
        tc = t.coalesce()
        self.assertEqual(tc.to_dense(), t.to_dense())
        self.assertTrue(tc.is_coalesced())

        # Our code below doesn't work when nnz is 0, because
        # then it's a 0D tensor, not a 2D tensor.
        if t._nnz() == 0:
            self.assertEqual(t._indices(), tc._indices())
            self.assertEqual(t._values(), tc._values())
            return tc

        value_map: Dict[Any, Any] = {}
        for idx, val in zip(t._indices().t(), t._values()):
            idx_tup = tuple(idx.tolist())
            if idx_tup in value_map:
                value_map[idx_tup] += val
            else:
                value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val

        new_indices = sorted(list(value_map.keys()))
        _new_values = [value_map[idx] for idx in new_indices]
        if t._values().ndimension() < 2:
            new_values = t._values().new(_new_values)
        else:
            new_values = torch.stack(_new_values)

        new_indices = t._indices().new(new_indices).t()
        tg = t.new(new_indices, new_values, t.size())

        self.assertEqual(tc._indices(), tg._indices())
        self.assertEqual(tc._values(), tg._values())

        if t.is_coalesced():
            self.assertEqual(tc._indices(), t._indices())
            self.assertEqual(tc._values(), t._values())

        return tg

    # Compares the given Torch and NumPy functions on the given tensor-like object.
    # NOTE: both torch_fn and np_fn should be functions that take a single
    #   tensor (array). If the torch and/or NumPy function require additional
    #   arguments then wrap the function in a lambda or pass a partial function.
    # TODO: support bfloat16 comparisons
    # TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol)
    def compare_with_numpy(self, torch_fn, np_fn, tensor_like,
                           device=None, dtype=None, **kwargs):
        assert TEST_NUMPY
        assert dtype is not torch.bfloat16

        if isinstance(tensor_like, torch.Tensor):
            assert device is None
            assert dtype is None
            a = tensor_like.detach().cpu().numpy()
            t = tensor_like
        else:
            a = np.array(tensor_like, dtype=torch_to_numpy_dtype_dict[dtype])
            t = torch.tensor(tensor_like, device=device, dtype=dtype)

        np_result = np_fn(a)
        torch_result = torch_fn(t).cpu()

        # Converts arrays to tensors
        if isinstance(np_result, np.ndarray):
            try:
                np_result = torch.from_numpy(np_result)
            except Exception:
                # NOTE: copying an array before conversion is necessary when,
                #   for example, the array has negative strides.
                np_result = torch.from_numpy(np_result.copy())

        self.assertEqual(np_result, torch_result, **kwargs)

    # Some analysis of tolerance by logging tests from test_torch.py can be found
    # in https://github.com/pytorch/pytorch/pull/32538.
    # dtype name : (rtol, atol)
    dtype_precisions = {
        torch.float16    : (0.001, 1e-5),
        torch.bfloat16   : (0.016, 1e-5),
        torch.float32    : (1.3e-6, 1e-5),
        torch.float64    : (1e-7, 1e-7),
        torch.complex32  : (0.001, 1e-5),
        torch.complex64  : (1.3e-6, 1e-5),
        torch.complex128 : (1e-7, 1e-7),
    }

    # Returns the "default" rtol and atol for comparing scalars or
    # tensors of the given dtypes.
    def _getDefaultRtolAndAtol(self, dtype0, dtype1):
        rtol = max(self.dtype_precisions.get(dtype0, (0, 0))[0],
                   self.dtype_precisions.get(dtype1, (0, 0))[0])
        atol = max(self.dtype_precisions.get(dtype0, (0, 0))[1],
                   self.dtype_precisions.get(dtype1, (0, 0))[1])

        return rtol, atol

    # Checks if two dense tensors are equal(-ish), returning (True, None)
    #   when they are and (False, debug_msg) when they are not.
    # If exact_dtype is true both tensors must have the same dtype.
    # If exact_device is true both tensors must be on the same device.
    # See the "Test Framework Tensor 'Equality'" note for more details.
    # NOTE: tensors on different devices are moved to the CPU to be compared when
    #   exact_device is False.
    # NOTE: this function checks the tensors' devices, sizes, and dtypes
    #  and acquires the appropriate device, dtype, rtol and atol to compare
    #  them with. It then calls _compare_tensors_internal.
    def _compareTensors(self, a, b, *, rtol: Optional[float] = None, atol=None, equal_nan=True,
                        exact_dtype=True, exact_device=False) -> _compare_return_type:
        assert (atol is None) == (rtol is None)
        if not isinstance(a, torch.Tensor):
            return (False, "argument a, {0}, to _compareTensors is not a tensor!".format(a))
        if not isinstance(b, torch.Tensor):
            return (False, "argument b, {0}, to _compareTensors is not a tensor!".format(b))

        # Validates tensors are on the same device
        if exact_device and a.device != b.device:
            return (False, ("Attempted to compare equality of tensors on "
                            "different devices! Got devices {0} and "
                            "{1}.".format(a.device, b.device)))

        # Compares tensors of different devices on the CPU
        if a.device != b.device:
            a = a.cpu()
            b = b.cpu()

        # Checks size matches
        if a.size() != b.size():
            return (False, ("Attempted to compare equality of tensors with "
                            "different sizes. Got sizes {0} and {1}.").format(a.size(), b.size()))

        # Checks dtype (if exact_dtype)
        if exact_dtype and a.dtype is not b.dtype:
            return (False, ("Attempted to compare equality of tensors with "
                            "different dtypes. Got dtypes {0} and {1}.").format(a.dtype, b.dtype))

        # Acquires rtol and atol
        if rtol is None:
            rtol, atol = self._getDefaultRtolAndAtol(a.dtype, b.dtype)

        atol = max(atol, self.precision)

        # Converts to comparison dtype
        dtype = get_comparison_dtype(a, b)
        a = a.to(dtype)
        b = b.to(dtype)

        return _compare_tensors_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)

    # Checks if two scalars are equal(-ish), returning (True, None)
    #   when they are and (False, debug_msg) when they are not.
    # NOTE: this function just acquires rtol and atol
    #   before calling _compare_scalars_internal.
    def _compareScalars(self, a, b, *,
                        rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan=True) -> _compare_return_type:
        # Acquires rtol and atol
        assert (atol is None) == (rtol is None)
        if rtol is None:
            if isinstance(a, complex) or isinstance(b, complex):
                rtol, atol = self._getDefaultRtolAndAtol(torch.complex64, torch.complex64)
            elif isinstance(a, float) or isinstance(b, float):
                rtol, atol = self._getDefaultRtolAndAtol(torch.float32, torch.float32)
            else:
                rtol, atol = 0, 0
        atol = max(atol, self.precision)

        return _compare_scalars_internal(a, b, rtol=cast(float, rtol), atol=cast(float, atol), equal_nan=equal_nan)

    def assertEqualIgnoreType(self, *args, **kwargs) -> None:
        # If you are seeing this function used, that means test is written wrongly
        # and deserves detailed investigation
        return self.assertEqual(*args, exact_dtype=False, **kwargs)

    # Compares x and y
    # TODO: default exact_device to True
    def assertEqual(self, x, y, msg: Optional[str] = None, *,
                    atol: Optional[float] = None, rtol: Optional[float] = None,
                    equal_nan=True, exact_dtype=True, exact_device=False) -> None:
        assert (atol is None) == (rtol is None), "If one of atol or rtol is specified the other must be, too"

        # Tensor x Number and Number x Tensor comparisons
        if isinstance(x, torch.Tensor) and isinstance(y, Number):
            self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
                             exact_dtype=exact_dtype, exact_device=exact_device)
        elif isinstance(y, torch.Tensor) and isinstance(x, Number):
            self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
                             exact_dtype=exact_dtype, exact_device=exact_device)
        # Tensor x np.bool
        elif isinstance(x, torch.Tensor) and isinstance(y, np.bool_):
            self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
                             exact_dtype=exact_dtype, exact_device=exact_device)
        elif isinstance(y, torch.Tensor) and isinstance(x, np.bool_):
            self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
                             exact_dtype=exact_dtype, exact_device=exact_device)
        # Tensor x Tensor
        elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
            super().assertEqual(x.is_sparse, y.is_sparse, msg=msg)
            super().assertEqual(x.is_quantized, y.is_quantized, msg=msg)
            if x.is_sparse:
                x = self.safeCoalesce(x)
                y = self.safeCoalesce(y)
                indices_result, debug_msg = self._compareTensors(x._indices(), y._indices(),
                                                                 rtol=rtol, atol=atol,
                                                                 equal_nan=equal_nan, exact_dtype=exact_dtype,
                                                                 exact_device=exact_device)

                if not indices_result and msg is None:
                    assert debug_msg is not None
                    msg = "Sparse tensor indices failed to compare as equal! " + debug_msg
                self.assertTrue(indices_result, msg=msg)

                values_result, debug_msg = self._compareTensors(x._values(), y._values(),
                                                                rtol=rtol, atol=atol,
                                                                equal_nan=equal_nan, exact_dtype=exact_dtype,
                                                                exact_device=exact_device)

                if not values_result and msg is None:
                    assert debug_msg is not None
                    msg = "Sparse tensor values failed to compare as equal! " + debug_msg
                self.assertTrue(values_result, msg=msg)
            elif x.is_quantized and y.is_quantized:
                self.assertEqual(x.qscheme(), y.qscheme(), atol=atol, rtol=rtol,
                                 msg=msg, exact_dtype=exact_dtype,
                                 exact_device=exact_device)

                if x.qscheme() == torch.per_tensor_affine:
                    self.assertEqual(x.q_scale(), y.q_scale(), atol=atol, rtol=rtol,
                                     msg=msg, exact_dtype=exact_dtype,
                                     exact_device=exact_device)
                    self.assertEqual(x.q_zero_point(), y.q_zero_point(),
                                     atol=atol, rtol=rtol, msg=msg,
                                     exact_dtype=exact_dtype, exact_device=exact_device)
                elif x.qscheme() == torch.per_channel_affine:
                    self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), atol=atol, rtol=rtol,
                                     msg=msg, exact_dtype=exact_dtype,
                                     exact_device=exact_device)
                    self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
                                     atol=atol, rtol=rtol, msg=msg,
                                     exact_dtype=exact_dtype, exact_device=exact_device)
                    self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
                                     atol=atol, rtol=rtol, msg=msg,
                                     exact_dtype=exact_dtype, exact_device=exact_device)

                result, debug_msg = self._compareTensors(x.int_repr().to(torch.int32),
                                                         y.int_repr().to(torch.int32),
                                                         atol=atol, rtol=rtol,
                                                         exact_dtype=exact_dtype,
                                                         exact_device=exact_device)

                if not result and msg is None:
                    assert debug_msg is not None
                    msg = "Quantized representations failed to compare as equal! " + debug_msg
                self.assertTrue(result, msg=msg)
            else:
                result, debug_msg = self._compareTensors(x, y, rtol=rtol, atol=atol,
                                                         equal_nan=equal_nan, exact_dtype=exact_dtype,
                                                         exact_device=exact_device)

                if not result and msg is None:
                    assert debug_msg is not None
                    msg = "Tensors failed to compare as equal! " + debug_msg
                self.assertTrue(result, msg=msg)
        elif isinstance(x, string_classes) and isinstance(y, string_classes):
            super().assertEqual(x, y, msg=msg)
        elif type(x) == set and type(y) == set:
            super().assertEqual(x, y, msg=msg)
        elif isinstance(x, dict) and isinstance(y, dict):
            if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
                self.assertEqual(x.items(), y.items(), atol=atol, rtol=rtol,
                                 msg=msg, exact_dtype=exact_dtype,
                                 exact_device=exact_device)
            else:
                self.assertEqual(set(x.keys()), set(y.keys()), atol=atol, rtol=rtol,
                                 msg=msg, exact_dtype=exact_dtype,
                                 exact_device=exact_device)
                key_list = list(x.keys())
                self.assertEqual([x[k] for k in key_list],
                                 [y[k] for k in key_list],
                                 atol=atol, rtol=rtol, msg=msg,
                                 exact_dtype=exact_dtype, exact_device=exact_device)
        elif isinstance(x, type) and isinstance(y, type):
            # See TestTorch.test_assert_equal_generic_meta
            super().assertEqual(x, y, msg=msg)
        elif is_iterable(x) and is_iterable(y):
            super().assertEqual(len(x), len(y), msg=msg)
            for x_, y_ in zip(x, y):
                self.assertEqual(x_, y_, atol=atol, rtol=rtol, msg=msg,
                                 exact_dtype=exact_dtype, exact_device=exact_device)
        elif isinstance(x, bool) and isinstance(y, bool):
            self.assertTrue(x == y, msg=msg)

        # Scalar x Scalar
        elif isinstance(x, Number) and isinstance(y, Number):
            result, debug_msg = self._compareScalars(x, y, rtol=rtol, atol=atol,
                                                     equal_nan=equal_nan)
            if not result and msg is None:
                assert debug_msg is not None
                msg = "Scalars failed to compare as equal! " + debug_msg
            self.assertTrue(result, msg=msg)
        else:
            super().assertEqual(x, y, msg=msg)

    def assertNotEqual(self, x, y, msg: Optional[str] = None, *,                                       # type: ignore[override] 
                       atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None:  # type: ignore[override]
        with self.assertRaises(AssertionError, msg=msg):
            self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs)

    def assertEqualTypeString(self, x, y) -> None:
        # This API is used simulate deprecated x.type() == y.type()
        self.assertEqual(x.device, y.device)
        self.assertEqual(x.dtype, y.dtype)
        self.assertEqual(x.is_sparse, y.is_sparse)

    def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None:
        for elem in iterable:
            if id(obj) == id(elem):
                return
        raise AssertionError("object not found in iterable")

    # TODO: Support context manager interface
    # NB: The kwargs forwarding to callable robs the 'subname' parameter.
    # If you need it, manually apply your callable in a lambda instead.
    def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
        subname = None
        if 'subname' in kwargs:
            subname = kwargs['subname']
            del kwargs['subname']
        try:
            callable(*args, **kwargs)
        except exc_type as e:
            self.assertExpected(str(e), subname)
            return
        # Don't put this in the try block; the AssertionError will catch it
        self.fail(msg="Did not raise when expected to")

    def assertNotWarn(self, callable, msg=''):
        r"""
        Test if :attr:`callable` does not raise a warning.
        """
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            callable()
            self.assertTrue(len(ws) == 0, msg)

    @contextmanager
    def maybeWarnsRegex(self, category, regex=''):
        """Context manager for code that *may* warn, e.g. ``TORCH_WARN_ONCE``.

        This filters expected warnings from the test log and fails the test if
        any unexpected warnings are caught.
        """
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            # Ignore expected warnings
            warnings.filterwarnings("ignore", message=regex, category=category)
            try:
                yield
            finally:
                if len(ws) != 0:
                    msg = 'Caught unexpected warnings:\n'
                    for w in ws:
                        msg += warnings.formatwarning(
                            str(w.message), w.category, w.filename, w.lineno, w.line)
                        msg += '\n'
                    self.fail(msg)

    def assertExpected(self, s, subname=None):
        r"""
        Test that a string matches the recorded contents of a file
        derived from the name of this test and subname.  This file
        is placed in the 'expect' directory in the same directory
        as the test script. You can automatically update the recorded test
        output using --accept.

        If you call this multiple times in a single function, you must
        give a unique subname each time.
        """
        if not isinstance(s, str):
            raise TypeError("assertExpected is strings only")

        def remove_prefix(text, prefix):
            if text.startswith(prefix):
                return text[len(prefix):]
            return text
        # NB: we take __file__ from the module that defined the test
        # class, so we place the expect directory where the test script
        # lives, NOT where test/common_utils.py lives.  This doesn't matter in
        # PyTorch where all test scripts are in the same directory as
        # test/common_utils.py, but it matters in onnx-pytorch
        module_id = self.__class__.__module__
        munged_id = remove_prefix(self.id(), module_id + ".")
        test_file = os.path.realpath(sys.modules[module_id].__file__)
        expected_file = os.path.join(os.path.dirname(test_file),
                                     "expect",
                                     munged_id)

        subname_output = ""
        if subname:
            expected_file += "-" + subname
            subname_output = " ({})".format(subname)
        expected_file += ".expect"
        expected = None

        def accept_output(update_type):
            print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s))
            with open(expected_file, 'w') as f:
                # Adjust for producer_version, leave s unmodified
                s_tag = re.sub(r'(producer_version): "[0-9.]*"',
                               r'\1producer_version: "CURRENT_VERSION"', s)
                f.write(s_tag)

        try:
            with open(expected_file) as f:
                expected = f.read()
        except IOError as e:
            if e.errno != errno.ENOENT:
                raise
            elif expecttest.ACCEPT:
                return accept_output("output")
            else:
                raise RuntimeError(
                    ("I got this output for {}{}:\n\n{}\n\n"
                     "No expect file exists; to accept the current output, run:\n"
                     "python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None

        # a hack for JIT tests
        if IS_WINDOWS:
            expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
            s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)

        # Adjust for producer_version
        expected = expected.replace(
            'producer_version: "CURRENT_VERSION"',
            'producer_version: "{}"'.format(torch.onnx.producer_version)
        )
        if expecttest.ACCEPT:
            if expected != s:
                return accept_output("updated output")
        else:
            if hasattr(self, "assertMultiLineEqual"):
                # Python 2.7 only
                # NB: Python considers lhs "old" and rhs "new".
                self.assertMultiLineEqual(expected, s)
            else:
                self.assertEqual(s, expected)

    def assertExpectedStripMangled(self, s, subname=None):
        s = re.sub(r'__torch__[^ ]+', '', s)
        self.assertExpected(s, subname)

    # returns captured stderr
    @staticmethod
    def runWithPytorchAPIUsageStderr(code):
        import subprocess

        env = os.environ.copy()
        env["PYTORCH_API_USAGE_STDERR"] = "1"
        pipes = subprocess.Popen(
            [sys.executable, '-c', code],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env)
        return pipes.communicate()[1].decode('ascii')

    if sys.version_info < (3, 2):
        # assertRegexpMatches renamed to assertRegex in 3.2
        assertRegex = unittest.TestCase.assertRegexpMatches
        # assertRaisesRegexp renamed to assertRaisesRegex in 3.2
        assertRaisesRegex = unittest.TestCase.assertRaisesRegexp

    if sys.version_info < (3, 5):
        # assertNotRegexpMatches renamed to assertNotRegex in 3.5
        assertNotRegex = unittest.TestCase.assertNotRegexpMatches


def download_file(url, binary=True):
    from urllib.parse import urlsplit
    from urllib import request, error

    filename = os.path.basename(urlsplit(url)[2])
    data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
    path = os.path.join(data_dir, filename)

    if os.path.exists(path):
        return path
    try:
        data = request.urlopen(url, timeout=15).read()
        with open(path, 'wb' if binary else 'w') as f:
            f.write(data)
        return path
    except error.URLError as e:
        msg = "could not download test file '{}'".format(url)
        warnings.warn(msg, RuntimeWarning)
        raise unittest.SkipTest(msg) from e


def find_free_port():
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
    sock.bind(('localhost', 0))
    sockname = sock.getsockname()
    sock.close()
    return sockname[1]

# Errors that we can get in c10d initialization for which we should retry tests for.
ADDRESS_IN_USE = "Address already in use"
CONNECT_TIMEOUT = "connect() timed out."

def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)):
    """Reruns a test if the test returns a RuntimeError and the exception
    matches exactly with one of the strings in connect_errors."""
    # This if block is executed when using this function as a decorator with arguments.
    if func is None:
        return partial(retry_on_connect_failures, connect_errors=connect_errors)

    @wraps(func)
    def wrapper(*args, **kwargs):
        tries_remaining = 10
        while True:
            try:
                return func(*args, **kwargs)
            except RuntimeError as error:
                if str(error) in connect_errors:
                    tries_remaining -= 1
                    if tries_remaining == 0:
                        raise
                    time.sleep(random.random())
                    continue
                raise
    return wrapper


# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
    def deco_retry(f):
        @wraps(f)
        def f_retry(*args, **kwargs):
            mtries, mdelay = tries, delay
            while mtries > 1:
                try:
                    return f(*args, **kwargs)
                except ExceptionToCheck as e:
                    msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
                    print(msg)
                    time.sleep(mdelay)
                    mtries -= 1
            try:
                return f(*args, **kwargs)
            except ExceptionToCheck as e:
                raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e
        return f_retry  # true decorator
    return deco_retry


# Methods for matrix and tensor generation

# Used in test_autograd.py and test_torch.py
def make_tensor(size, device: torch.device, dtype: torch.dtype, *,
                low, high, requires_grad: bool = False) -> torch.Tensor:
    """Returns a tensor of the specified size on the given device and dtype.
       The tensors values are between -9 and 9, inclusive, for most dtypes,
       unless low (high) is not None in which case the values are between
       max(-9, low) and min(9, high).
       For unsigned types the values are between 0 and 9, and for complex
       dtypes the real and imaginary parts are each between -9 and 9,
       independently."""

    assert low is None or low < 9, "low value too high!"
    assert high is None or high > -9, "high value too low!"

    if dtype is torch.bool:
        return torch.randint(0, 2, size, device=device, dtype=dtype)

    if dtype is torch.uint8:
        low = math.floor(0 if low is None else max(low, 0))
        high = math.ceil(10 if high is None else min(high, 10))
        return torch.randint(low, high, size, device=device, dtype=dtype)
    elif dtype in integral_types():
        low = math.floor(-9 if low is None else max(low, -9))
        high = math.ceil(10 if high is None else min(high, 10))
        return torch.randint(low, high, size, device=device, dtype=dtype)
    elif dtype in floating_types_and(torch.half, torch.bfloat16):
        low = -9 if low is None else max(low, -9)
        high = 9 if high is None else min(high, 10)
        span = high - low
        # Windows doesn't support torch.rand(bfloat16) on CUDA
        if IS_WINDOWS and torch.device(device).type == 'cuda' and dtype is torch.bfloat16:
            t = (torch.rand(size, device=device, dtype=torch.float32) * span + low).to(torch.bfloat16)
        else:
            t = torch.rand(size, device=device, dtype=dtype) * span + low
        t.requires_grad = requires_grad
        return t
    else:
        assert dtype in complex_types()
        low = -9 if low is None else max(low, -9)
        high = 9 if high is None else min(high, 10)
        span = high - low
        float_dtype = torch.float if dtype is torch.cfloat else torch.double
        real = torch.rand(size, device=device, dtype=float_dtype) * span + low
        imag = torch.rand(size, device=device, dtype=float_dtype) * span + low
        c = torch.complex(real, imag)
        c.requires_grad = requires_grad
        return c


def prod_single_zero(dim_size):
    result = torch.randn(dim_size, dim_size)
    result[0, 1] = 0
    return result


def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'):
    assert rank <= l
    A = torch.randn(l, l, dtype=dtype, device=device)
    u, s, v = A.svd()
    for i in range(l):
        if i >= rank:
            s[i] = 0
        elif s[i] == 0:
            s[i] = 1
    return u.mm(torch.diag(s)).mm(v.transpose(0, 1))


def random_symmetric_matrix(l, *batches, **kwargs):
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
    A = (A + A.transpose(-2, -1)).div_(2)
    return A


def random_symmetric_psd_matrix(l, *batches, **kwargs):
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
    return torch.matmul(A, A.transpose(-2, -1))


def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs):
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
                    dtype=dtype, device=device)
    return torch.matmul(A, A.transpose(-2, -1)) \
        + torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5


def make_nonzero_det(A, sign=None, min_singular_value=0.1):
    u, s, v = A.svd()
    s.clamp_(min=min_singular_value)
    A = torch.matmul(u, torch.matmul(torch.diag_embed(s), v.transpose(-2, -1)))
    det = A.det()
    if sign is not None:
        if A.dim() == 2:
            det = det.item()
            if (det < 0) ^ (sign < 0):
                A[0, :].neg_()
        else:
            cond = ((det < 0) ^ (sign < 0)).nonzero()
            if cond.size(0) > 0:
                for i in range(cond.size(0)):
                    A[list(cond[i])][0, :].neg_()
    return A


def random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_dims,
                                                   **kwargs):
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    silent = kwargs.get("silent", False)
    if silent and not torch._C.has_lapack:
        return torch.ones(matrix_size, matrix_size, dtype=dtype, device=device)

    A = torch.randn(batch_dims + (matrix_size, matrix_size), dtype=dtype, device=device)
    u, _, v = A.svd()
    s = torch.arange(1., matrix_size + 1, dtype=dtype, device=device).mul_(1.0 / (matrix_size + 1)).diag()
    return u.matmul(s.expand(batch_dims + (matrix_size, matrix_size)).matmul(v.transpose(-2, -1)))


def random_matrix(rows, columns, *batch_dims, **kwargs):
    """Return rectangular matrix or batches of rectangular matrices.

    Parameters:
      dtype - the data type
      device - the device kind
      singular - when True, the output will be singular
    """
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    silent = kwargs.get("silent", False)
    singular = kwargs.get("singular", False)
    if silent and not torch._C.has_lapack:
        return torch.ones(rows, columns, dtype=dtype, device=device)

    A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device)
    u, _, v = A.svd(some=False)
    s = torch.zeros(rows, columns, dtype=dtype, device=device)
    k = min(rows, columns)
    for i in range(k):
        s[i, i] = float(i + 1) / (k + 1)
    if singular:
        # make matrix singular
        s[k - 1, k - 1] = 0
        if k > 2:
            # increase the order of singularity so that the pivoting
            # in LU factorization will be non-trivial
            s[0, 0] = 0
    return u.matmul(s.expand(batch_dims + (rows, columns)).matmul(v.transpose(-2, -1)))


def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs):
    """Return rectangular matrix or batches of rectangular matrices with
    given rank.
    """
    B = random_matrix(rows, rank, *batch_dims, **kwargs)
    C = random_matrix(rank, columns, *batch_dims, **kwargs)
    return B.matmul(C)


def random_sparse_matrix(rows, columns, density=0.01, **kwargs):
    """Return rectangular random sparse matrix within given density.

    The density of the result approaches to given density as the size
    of the matrix is increased and a relatively small value of density
    is specified but higher than min(rows, columns)/(rows * columns)
    for non-singular matrices.
    """
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    singular = kwargs.get("singular", False)

    k = min(rows, columns)
    nonzero_elements = max(min(rows, columns), int(rows * columns * density))

    row_indices = [i % rows for i in range(nonzero_elements)]
    column_indices = [i % columns for i in range(nonzero_elements)]
    random.shuffle(column_indices)
    indices = [row_indices, column_indices]
    values = torch.randn(nonzero_elements, dtype=dtype, device=device)
    # ensure that the diagonal dominates
    values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp()
    indices_tensor = torch.tensor(indices)
    A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device)
    return A.coalesce()


def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs):
    """Return random sparse positive-definite matrix with given density.

    The eigenvalues of the matrix are defined as::
      arange(1, matrix_size+1)/matrix_size

    Algorithm:
      A = diag(arange(1, matrix_size+1)/matrix_size)
      while <A density is smaller than required>:
          <choose random i, j in range(matrix_size), theta in [0, 2*pi]>
          R = <rotation matrix (i,j,theta)>
          A = R^T A R
    """
    import math
    torch = kwargs.get('torch', globals()['torch'])
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    data = dict([((i, i), float(i + 1) / matrix_size)
                 for i in range(matrix_size)])


    def multiply(data, N, i, j, cs, sn, left=True):
        for k in range(N):
            if left:
                ik, jk = (k, i), (k, j)
            else:
                ik, jk = (i, k), (j, k)
            aik, ajk = data.get(ik, 0), data.get(jk, 0)
            aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk
            if aik:
                data[ik] = aik
            else:
                data.pop(ik, None)
            if ajk:
                data[jk] = ajk
            else:
                data.pop(jk, None)

    target_nnz = density * matrix_size * matrix_size
    while len(data) < target_nnz:
        i = random.randint(0, matrix_size - 1)
        j = random.randint(0, matrix_size - 1)
        if i != j:
            theta = random.uniform(0, 2 * math.pi)
            cs = math.cos(theta)
            sn = math.sin(theta)
            multiply(data, matrix_size, i, j, cs, sn, left=True)
            multiply(data, matrix_size, i, j, cs, sn, left=False)
    icoords, jcoords, values = [], [], []
    for (i, j), v in sorted(data.items()):
        icoords.append(i)
        jcoords.append(j)
        values.append(v)
    indices_tensor = torch.tensor([icoords, jcoords])
    return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device)


def do_test_dtypes(self, dtypes, layout, device):
    for dtype in dtypes:
        if dtype != torch.float16:
            out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
            self.assertIs(dtype, out.dtype)
            self.assertIs(layout, out.layout)
            self.assertEqual(device, out.device)


def do_test_empty_full(self, dtypes, layout, device):
    shape = torch.Size([2, 3])

    def check_value(tensor, dtype, layout, device, value, requires_grad):
        self.assertEqual(shape, tensor.shape)
        self.assertIs(dtype, tensor.dtype)
        self.assertIs(layout, tensor.layout)
        self.assertEqual(tensor.requires_grad, requires_grad)
        if tensor.is_cuda and device is not None:
            self.assertEqual(device, tensor.device)
        if value is not None:
            fill = tensor.new(shape).fill_(value)
            self.assertEqual(tensor, fill)

    def get_int64_dtype(dtype):
        module = '.'.join(str(dtype).split('.')[1:-1])
        if not module:
            return torch.int64
        return operator.attrgetter(module)(torch).int64

    default_dtype = torch.get_default_dtype()
    check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
    check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False)
    for dtype in dtypes:
        for rg in {dtype.is_floating_point, False}:
            int64_dtype = get_int64_dtype(dtype)
            v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
            check_value(v, dtype, layout, device, None, rg)
            out = v.new()
            check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
                        dtype, layout, device, None, rg)
            check_value(v.new_empty(shape), dtype, layout, device, None, False)
            check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
                        int64_dtype, layout, device, None, False)
            check_value(torch.empty_like(v), dtype, layout, device, None, False)
            check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
                        int64_dtype, layout, device, None, False)

            if dtype is not torch.float16 and layout != torch.sparse_coo:
                fv = 3
                v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
                check_value(v, dtype, layout, device, fv, rg)
                check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
                out = v.new()
                check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
                            dtype, layout, device, fv + 2, rg)
                check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
                            int64_dtype, layout, device, fv + 3, False)
                check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
                check_value(torch.full_like(v, fv + 5,
                                            dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
                            int64_dtype, layout, device, fv + 5, False)




THESE_TAKE_WAY_TOO_LONG = {
    'test_Conv3d_groups',
    'test_conv_double_backward',
    'test_conv_double_backward_groups',
    'test_Conv3d_dilated',
    'test_Conv3d_stride_padding',
    'test_Conv3d_dilated_strided',
    'test_Conv3d',
    'test_Conv2d_dilated',
    'test_ConvTranspose3d_dilated',
    'test_ConvTranspose2d_dilated',
    'test_snli',
    'test_Conv2d',
    'test_Conv2d_padding',
    'test_ConvTranspose2d_no_bias',
    'test_ConvTranspose2d',
    'test_ConvTranspose3d',
    'test_Conv2d_no_bias',
    'test_matmul_4d_4d',
    'test_multinomial_invalid_probs',
}


running_script_path = None


def set_running_script_path():
    global running_script_path
    try:
        running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
        if running_file.endswith('.py'):  # skip if the running file is not a script
            running_script_path = running_file
    except Exception:
        pass


def check_test_defined_in_running_script(test_case):
    if running_script_path is None:
        return
    test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
    assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \
        "is not defined in the running script \"{}\", but in \"{}\". Did you " \
        "accidentally import a unittest.TestCase from another file?".format(
            test_case.id(), running_script_path, test_case_class_file)


def load_tests(loader, tests, pattern):
    set_running_script_path()
    test_suite = unittest.TestSuite()
    for test_group in tests:
        for test in test_group:
            check_test_defined_in_running_script(test)
            test_suite.addTest(test)
    return test_suite


class BytesIOContext(io.BytesIO):
    def __enter__(self):
        return self

    def __exit__(self, *args):
        pass

def _assertGradAndGradgradChecks(test_case, apply_fn, inputs):
    # call assert function rather than returning a bool since it's nicer
    # if we get whether this failed on the gradcheck or the gradgradcheck.
    test_case.assertTrue(gradcheck(apply_fn, inputs))
    test_case.assertTrue(gradgradcheck(apply_fn, inputs))


# Using @precisionOverride specific to your test is the recommended way
# of doing this. These are just some values that worked for test_nn.
dtype2prec_DONTUSE = {torch.float: 1e-5,
                      torch.double: 1e-5,
                      torch.half: 1e-2,
                      torch.bfloat16: 1e-1}