1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
from typing import List
# Torch
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
from torch.testing._internal.common_methods_invocations import non_differentiable, create_input, \
unpack_variables
import torch.nn.functional as F
import torch
import torch.cuda
import torch.jit
import torch.jit._logging
import torch.jit.frontend
from torch.testing._internal.common_nn import module_tests, new_module_tests
from copy import deepcopy
import math # noqa: F401
# Testing utils
from torch._six import inf
torch.set_default_dtype(torch.double)
L = 20
M = 10
S = 5
# NB: JIT script tests for all nn functional interfaces, script mode does
# not support in_place operations yet, so no inplace operation tests added.
# removed all the deprecated functions
#
# (
# method name,
# input size/constructing fn,
# args (tuple represents shape of a tensor arg),
# test variant name(will be used at test name suffix,
# 'inplace' skips grad tests), // optional
# (True, nonfusible_nodes, fusible_nodes) for autodiff // optional
# fn to determine if test should be skipped, // optional
# fn mapping output to part that should be gradcheck'ed, // optional
# kwargs for function, // optional
# )
nn_functional_tests = [
('conv1d', (S, S, S), ((S, S, S),)),
('conv2d', (S, S, S, S), ((S, S, S, S),)),
('conv3d', (S, S, S, S, S), ((S, S, S, S, S),)),
('conv_transpose1d', (S, S, S), ((S, S, S),)),
('conv_transpose2d', (S, S, S, S), ((S, S, S, S),)),
('conv_transpose3d', (S, S, S, S, S), ((S, S, S, S, S),)),
('conv_tbc', (S, S, S), ((S, S, S), (S,), 2)),
('avg_pool1d', (S, S, S), (3,)),
('avg_pool2d', (S, S, S, S), (3,), '', (True,)),
('avg_pool3d', (S, S, S, S, S), (3,)),
('fractional_max_pool2d', (S, S, S, S), (3, [2, 3],)),
('max_pool1d', (S, S, S), (2, 1)),
('max_pool1d', (S, S, S), (2, 1, 1, 1, False, True), 'with_indices'),
('max_pool2d', (S, S, S, S), (2, 1), '', (True, 'aten::max_pool2d_with_indices')),
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
('adaptive_max_pool3d', (S, S, S, S, S), ([3, 2, 2],)),
('adaptive_avg_pool1d', (S, S, S), (5,), '', (True,)),
('adaptive_avg_pool2d', (S, S, S, S), ([5, 7],), '', (True,)),
('adaptive_avg_pool3d', (S, S, S, S, S), ([3, 2, 2],), '', (True,)),
('dropout', (S, S, S), (0.5,), '', (True,
['aten::bernoulli_',
'aten::empty_like', 'aten::mul', 'aten::div'])),
('alpha_dropout', (S, S, S), (0.5,)),
('dropout2d', (S, S, S), (0.5,)),
('dropout3d', (S, S, S), (0.5,)),
('feature_alpha_dropout', (S, S, S), (0.5,)),
('threshold', (S, S, S), (0.1, 2.), '', (True,)),
('threshold', (S, S, S), (0.1, 2., True), 'inplace'),
('relu', (S, S, S), (), '', (True,)),
('relu', (S, S, S), (), 'inplace'),
('glu', (S - 1, S - 1, S - 1), (),),
('hardtanh', (S, S, S), (-0.5, 0.5),),
('hardtanh', (S, S, S), (-0.5, 0.5, True), 'inplace'),
('relu6', (S, S, S), (),),
('relu6', (S, S, S), (True), 'inplace'),
('elu', (S, S, S), (0.9,),),
('elu', (S, S, S), (0.9, True), 'inplace'),
('selu', (S, S, S), (),),
('selu', (S, S, S), (True), 'inplace'),
('celu', (S, S, S), (0.9,),),
('celu', (S, S, S), (0.9, True), 'inplace'),
('leaky_relu', (S, S, S), (0.02,),),
('leaky_relu', (S, S, S), (0.02,), 'inplace'),
('rrelu', (S, S), (0.1, 0.3, False),),
('rrelu', (S, S), (0.1, 0.3, False, True), 'inplace'),
('hardshrink', (S, S, S), (0.4,),),
('tanhshrink', (S, S, S), (),),
('softsign', (S, S, S), (),),
('softplus', (S, S, S), (),),
('softmin', (S, S, S), (0,),),
('softmax', (S, S, S), (0,), '', (True,)),
('softmax', (S, S, S), (0, 3, torch.double), 'with_all_args', (True,)),
('tanh', (S, S, S), (), '', (True,)),
('sigmoid', (S, S, S), (), '', (True,)),
('log_softmax', (S, S, S), (0,), '', (True,)),
('linear', (S, S), ((M, S),), '', (True, ['aten::t', 'aten::matmul'])),
('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::add', 'aten::mm'])),
('bilinear', (S, S, S), ((S, S, M), torch.zeros(M, S, M),),),
('embedding', torch.tensor([[1, 2, 4, 5], [4, 3, 2, 5]]), (torch.rand(6, 3), ), '', (True,)),
('embedding_bag', torch.tensor([1, 2, 4, 2]), (torch.rand(5, 3), torch.tensor([0, 4]),),),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), ),
'', (False, 'aten::_batch_norm_impl_index')),
('instance_norm', (S, S, S), (non_differentiable(torch.zeros(S)), non_differentiable(torch.ones(S))),),
('layer_norm', (S, S, S, S), ([5],), '',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),), 'with_only_weight',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], None, non_differentiable(torch.rand(S)),), 'with_only_bias',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),
non_differentiable(torch.rand(S))), 'with_weight_and_bias',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index', 'aten::addcmul'])),
('group_norm', (S, S, S), (1, torch.rand(5),),),
('local_response_norm', (S, S, S), (2, ),),
('nll_loss', F.log_softmax(torch.randn(3, 5), dim=0), (torch.tensor([1, 0, 4]),), '', (True, 'aten::nll_loss_forward')),
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2),),),
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2), True, True), 'full'),
('kl_div', F.log_softmax(torch.randn(S, 10), 1), (F.softmax(torch.randn(S, 10), 1),),),
('cross_entropy', (3, S), (torch.randint(S, (3,), dtype=torch.int64),),),
('binary_cross_entropy_with_logits', (3,), (torch.empty(3).random_(2), ),),
('smooth_l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('mse_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('smooth_l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('mse_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('margin_ranking_loss', (3, S), ((3, S), (S,)),),
('hinge_embedding_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('multilabel_soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('cosine_embedding_loss', (S, S), ((S, S), non_differentiable(torch.rand(S,))),),
('pixel_shuffle', (1, 9, 4, 4), (3,),),
('affine_grid', (S, 2, 3), (torch.Size([S, 1, 7, 7]),),),
('pad', (3, 3, 4, 2), ([1, 1],),),
('pairwise_distance', (S, S), ((S, S),),),
('pdist', (S, S), (),),
('cosine_similarity', (S, S), ((S, S),),),
('triplet_margin_loss', (S, S), ((S, S), (S, S)),),
('normalize', (S, S, S), (),),
('unfold', (S, S, S, S), ([2, 3]),),
('fold', (1, 3 * 2 * 2, 12), ([4, 5], [2, 2]),),
('grid_sample', (S, S, S, S), (non_differentiable(torch.rand(S, S, S, 2)),),),
('gumbel_softmax', (S, S), (2.,), '', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
('gumbel_softmax', (S, S), (2., True,), 'hard', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
('multilabel_margin_loss', torch.tensor([[0.2, -0.2, 0.07]]), (torch.tensor([[0, 0, 1]]),),),
('multi_margin_loss', (S, S), (non_differentiable(torch.randint(S, (S, ), dtype=torch.int64)),
1, 1., non_differentiable(torch.randn(S))),),
('binary_cross_entropy', torch.randn(3, 2).sigmoid(), (non_differentiable(torch.rand(3, 2)),
non_differentiable(torch.randn(3, 2))),),
('binary_cross_entropy', torch.randn(3, 2).sigmoid(),
(non_differentiable(torch.rand(3, 2)),
non_differentiable(torch.randn(3, 2)), None, None, 'mean'), 'size_average'),
('ctc_loss', torch.rand(S, S, S).log_softmax(2).detach().requires_grad_(),
(torch.randint(1, S, (S, S), dtype=torch.long), torch.full((S,), S, dtype=torch.long),
torch.randint(1, S, (S,), dtype=torch.long))),
('upsample', torch.randn(S, S, M, M), (None, 2.), 'with_scale'),
('upsample', torch.randn(S, S, M, M), (4,), 'with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'nearest_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'nearest_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'nearest_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'area_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'area_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'area_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bilinear_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bilinear_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'bilinear_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bicubic_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bicubic_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'bicubic_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'nearest_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'nearest_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'nearest_3d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'area_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'area_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'area_3d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'linear_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'linear_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'linear_3d_with_size'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'nearest_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'nearest_5d_with_size'),
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'area_5d'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'area_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'area_5d_with_size'),
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'trilinear_5d'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'trilinear_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'trilinear_5d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2, None, 'nearest', None, False),
'nearest_4d_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'nearest', None, False),
'nearest_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bilinear', None, False),
'bilinear_4d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'bilinear', None, False),
'bilinear_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bicubic', None, False),
'bicubic_4d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'bicubic', None, False),
'bicubic_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (None, 2., 'nearest', None, False),
'nearest_3d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (4, None, 'nearest', None, False),
'nearest_3d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (None, 2., 'linear', None, False),
'linear_3d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (4, None, 'linear', None, False),
'linear_3d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'nearest', None, False),
'nearest_5d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'nearest', None, False),
'nearest_5d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'trilinear', None, False),
'trilinear_5d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'trilinear', None, False),
'trilinear_5d_with_size_not_recompute_scale_factor'),
]
script_template = '''
def the_method({}):
return {}
'''
def get_call(method_name, func_type, args, kwargs):
kwargs_str = ', '.join([k + '=' + str(v) for k, v in kwargs.items()])
self_arg = args[0]
if(func_type == 'method'):
args = args[1:]
argument_str = ', '.join(args)
argument_str += ', ' if len(args) and len(kwargs) else ''
argument_str += kwargs_str
if func_type == 'functional':
call = 'torch.{}({})'.format(method_name, argument_str)
elif func_type == 'method':
call = '{}.{}({})'.format(self_arg, method_name, argument_str)
elif func_type == 'nn_functional':
call = 'torch.nn.functional.{}({})'.format(method_name, argument_str)
else:
raise TypeError('Unsupported function type')
return call
def get_constant(x):
if x == inf:
return 'math.inf'
if x == -inf:
return '-math.inf'
return x
def get_script_args(args):
formals: List[str] = []
tensors: List[torch.Tensor] = []
actuals: List[str] = []
for arg in args:
if isinstance(arg, torch.Tensor):
name = 'i{}'.format(len(formals))
formals.append(name)
actuals.append(name)
tensors.append(arg)
elif isinstance(arg, str):
actuals.append("'{}'".format(arg))
else:
actuals.append(str(get_constant(arg)))
return (formals, tensors, actuals)
# create a script function from (name, func_type, output_process_fn),
# and returns the compiled function and example inputs
def gen_script_fn_and_args(method_name, func_type, *args, **kwargs):
formals, tensors, actuals = get_script_args(args)
call = get_call(method_name, func_type, actuals, kwargs)
script = script_template.format(', '.join(formals), call)
CU = torch.jit.CompilationUnit(script)
return CU.the_method, tensors
# create a script function from (name, func_type, output_process_fn),
# returns a function takes in (args, kwargs) and runs the compiled function and
# then applies the post process fn to the outputs
def create_script_fn(self, method_name, func_type, output_process_fn):
def script_fn(*args, **kwargs):
fn, tensors = gen_script_fn_and_args(method_name, func_type, *args, **kwargs)
self.assertExportImport(fn.graph, tensors)
output = output_process_fn(fn(*tensors))
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
script_fn.last_graph = fn.graph_for(*tensors) # type: ignore[attr-defined]
return output
return script_fn
# make a new function where all non-tensor arguments in 'args' have been partially
# applied, and all tensor arguments remain.
# used to trace functions when some arguments are not tensors
def partial_apply_nontensors(fn, args, **kwargs):
source = ['t' if isinstance(arg, torch.Tensor) else 's' for arg in args]
def new_fn(*tensors_):
tensors = iter(tensors_)
return fn(*(args[i] if s == 's' else next(tensors) for i, s in enumerate(source)), **kwargs)
return new_fn, [arg for arg in args if isinstance(arg, torch.Tensor)]
# create a trace function from input fn
def create_traced_fn(self, fn):
def traced_fn(*inputs, **kwargs):
fn_tensors, inputs_tensors = partial_apply_nontensors(fn, inputs, **kwargs)
# `check_trace` is set to False because check_trace is run with @no_grad
# Also, `check_against_reference` already does all the checks
# against python function
traced = torch.jit.trace(fn_tensors, inputs_tensors, check_trace=False)
self.assertExportImport(traced.graph, inputs_tensors)
output = traced(*inputs_tensors)
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
traced_fn.last_graph = traced.graph_for(*inputs_tensors) # type: ignore[attr-defined]
return output
return traced_fn
# known to be failing in script
EXCLUDE_SCRIPT = {
'test_norm_fro_default',
'test_norm_fro_cpu',
'test_norm_nuc',
'test_norm_fro',
'test_norm_nuc_batched',
# aten op has additional cudnn argument
'test_nn_unfold',
# flaky test - TODO fix
'test_nn_ctc_loss',
# unknown builtin op
'test_nn_fold',
# jit doesn't support sparse tensors.
'test_to_sparse'
}
# generates a script function and set of example inputs
# from a specified test in the format of nn_functional_tests
def get_nn_functional_compiled_fn_and_inputs(name, self_size, args, variant_name='', *extra_args):
test_name = 'test_nn_' + name
if variant_name != '':
test_name = test_name + '_' + variant_name
no_grad = variant_name == 'inplace'
self_variable = create_input((self_size,))[0][0]
kwargs = None
# need to record this because methods can change the size (e.g. unsqueeze)
args_variable, kwargs_variable = create_input(args)
self_tensor = deepcopy(self_variable.data)
args_tensor = deepcopy(unpack_variables(args_variable))
f_args_variable = (self_variable,) + args_variable
f_args_tensor = (self_tensor,) + args_tensor
with torch._jit_internal._disable_emit_hooks():
script_fn, inputs = gen_script_fn_and_args(name, "nn_functional", *f_args_variable)
return script_fn, inputs
# additional modules test
# TODO: delete this list once we make all nn_tests work
additional_module_tests = [
{
'module_name': 'Bilinear',
'constructor_args': (S, S, M),
'input_size': (S, S),
'extra_args': ((S, S),)
},
{
'module_name': 'RNNCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'LSTMCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'GRUCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'MultiheadAttention',
'constructor_args': (128, 8),
'input_size': (10, 8, 128),
'extra_args': (torch.randn(10, 8, 128), torch.randn(10, 8, 128)),
'slowTest': True
},
{
'module_name': 'Transformer',
'constructor_args': (1, 1, 1, 1, 2),
'input_size': (3, 1, 1),
'extra_args': (torch.randn(1, 1, 1),),
'slowTest': True
}
]
EXCLUDE_SCRIPT_MODULES = {
'test_nn_AdaptiveAvgPool2d_tuple_none',
'test_nn_AdaptiveAvgPool3d_tuple_none',
'test_nn_AdaptiveMaxPool2d_tuple_none',
'test_nn_AdaptiveMaxPool3d_tuple_none',
# Doesn't use future division, so this is not supported
'test_nn_CrossMapLRN2d',
}
script_method_template = '''
def forward({}):
return {}
'''
def create_script_module(self, nn_module, constructor_args, *args, **kwargs):
def script_module(*args, **kwargs):
formals, tensors, actuals = get_script_args(args)
method_args = ', '.join(['self'] + actuals)
call_args_str = ', '.join(actuals)
call = "self.submodule({})".format(call_args_str)
script = script_method_template.format(method_args, call)
submodule_constants = []
if kwargs.get('is_constant'):
submodule_constants = ['submodule']
# Create module to use the script method
class TheModule(torch.jit.ScriptModule):
__constants__ = submodule_constants
def __init__(self):
super(TheModule, self).__init__()
self.submodule = nn_module(*constructor_args)
def make_module(script):
module = TheModule()
# check __repr__
str(module)
module.define(script)
return module
module = make_module(script)
if self:
self.assertExportImportModule(module, tensors)
module(*args)
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
create_script_module.last_graph = module.graph # type: ignore[attr-defined]
return module
return script_module
def get_nn_module_name_from_kwargs(**kwargs):
if 'module_name' in kwargs:
return kwargs['module_name']
elif 'fullname' in kwargs:
return kwargs['fullname']
elif 'constructor' in kwargs:
return kwargs['constructor'].__name__
def get_nn_mod_test_name(**kwargs):
name = get_nn_module_name_from_kwargs(**kwargs)
test_name = name
if 'desc' in kwargs:
test_name = "{}_{}".format(test_name, kwargs['desc'])
return 'test_nn_{}'.format(test_name)
def get_nn_module_class_from_kwargs(**kwargs):
name = get_nn_module_name_from_kwargs(**kwargs)
index = name.find("_")
if index == -1:
return name
else:
return name[0:name.find("_")]
def try_get_nn_module_compiled_mod_and_inputs(*args, **kwargs):
name = get_nn_module_name_from_kwargs(**kwargs)
if 'desc' in kwargs and 'eval' in kwargs['desc']:
# eval() is not supported, so skip these tests
return
test_name = name
if 'desc' in kwargs:
test_name = "{}_{}".format(test_name, kwargs['desc'])
test_name = get_nn_mod_test_name(**kwargs)
if test_name in EXCLUDE_SCRIPT_MODULES:
return
if 'constructor' in kwargs:
nn_module = kwargs['constructor']
else:
nn_module = getattr(torch.nn, name)
if "FunctionalModule" in str(nn_module):
return
if 'constructor_args_fn' in kwargs:
constructor_args = kwargs['constructor_args_fn']()
else:
constructor_args = kwargs.get('constructor_args', ())
# Set up inputs from tuple of sizes or constructor fn
if 'input_fn' in kwargs:
input = kwargs['input_fn']()
else:
input = (kwargs['input_size'],)
# Extra parameters to forward()
if 'extra_args' in kwargs:
input = input + kwargs['extra_args']
if 'target_size' in kwargs:
input = input + (kwargs['target_size'],)
elif 'target_fn' in kwargs:
if torch.is_tensor(input):
input = (input,)
input = input + (kwargs['target_fn'](),)
args_variable, kwargs_variable = create_input(input)
f_args_variable = deepcopy(unpack_variables(args_variable))
out_var = deepcopy(f_args_variable)
args, mod = f_args_variable, create_script_module(None, nn_module, constructor_args, *f_args_variable)(*f_args_variable)
return mod, out_var
def get_all_nn_module_tests():
return module_tests + new_module_tests + additional_module_tests
|