1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers.
These **needs** to be in global scope since Py2 doesn't support serializing
static methods.
"""
import torch
import random
import os
from collections import namedtuple
from torch._six import queue
from torch._utils import ExceptionWrapper
from typing import Union
from . import signal_handling, MP_STATUS_CHECK_INTERVAL, IS_WINDOWS
if IS_WINDOWS:
import ctypes
from ctypes.wintypes import DWORD, BOOL, HANDLE
# On Windows, the parent ID of the worker process remains unchanged when the manager process
# is gone, and the only way to check it through OS is to let the worker have a process handle
# of the manager and ask if the process status has changed.
class ManagerWatchdog(object):
def __init__(self):
self.manager_pid = os.getppid()
# mypy cannot detect this code is windows only
self.kernel32 = ctypes.WinDLL('kernel32', use_last_error=True) # type: ignore
self.kernel32.OpenProcess.argtypes = (DWORD, BOOL, DWORD)
self.kernel32.OpenProcess.restype = HANDLE
self.kernel32.WaitForSingleObject.argtypes = (HANDLE, DWORD)
self.kernel32.WaitForSingleObject.restype = DWORD
# Value obtained from https://msdn.microsoft.com/en-us/library/ms684880.aspx
SYNCHRONIZE = 0x00100000
self.manager_handle = self.kernel32.OpenProcess(SYNCHRONIZE, 0, self.manager_pid)
if not self.manager_handle:
raise ctypes.WinError(ctypes.get_last_error()) # type: ignore
self.manager_dead = False
def is_alive(self):
if not self.manager_dead:
# Value obtained from https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx
self.manager_dead = self.kernel32.WaitForSingleObject(self.manager_handle, 0) == 0
return not self.manager_dead
else:
class ManagerWatchdog(object): # type: ignore[no-redef]
def __init__(self):
self.manager_pid = os.getppid()
self.manager_dead = False
def is_alive(self):
if not self.manager_dead:
self.manager_dead = os.getppid() != self.manager_pid
return not self.manager_dead
_worker_info = None
class WorkerInfo(object):
__initialized = False
def __init__(self, **kwargs):
for k, v in kwargs.items():
setattr(self, k, v)
self.__keys = tuple(kwargs.keys())
self.__initialized = True
def __setattr__(self, key, val):
if self.__initialized:
raise RuntimeError("Cannot assign attributes to {} objects".format(self.__class__.__name__))
return super(WorkerInfo, self).__setattr__(key, val)
def __repr__(self):
items = []
for k in self.__keys:
items.append('{}={}'.format(k, getattr(self, k)))
return '{}({})'.format(self.__class__.__name__, ', '.join(items))
def get_worker_info():
r"""Returns the information about the current
:class:`~torch.utils.data.DataLoader` iterator worker process.
When called in a worker, this returns an object guaranteed to have the
following attributes:
* :attr:`id`: the current worker id.
* :attr:`num_workers`: the total number of workers.
* :attr:`seed`: the random seed set for the current worker. This value is
determined by main process RNG and the worker id. See
:class:`~torch.utils.data.DataLoader`'s documentation for more details.
* :attr:`dataset`: the copy of the dataset object in **this** process. Note
that this will be a different object in a different process than the one
in the main process.
When called in the main process, this returns ``None``.
.. note::
When used in a :attr:`worker_init_fn` passed over to
:class:`~torch.utils.data.DataLoader`, this method can be useful to
set up each worker process differently, for instance, using ``worker_id``
to configure the ``dataset`` object to only read a specific fraction of a
sharded dataset, or use ``seed`` to seed other libraries used in dataset
code (e.g., NumPy).
"""
return _worker_info
r"""Dummy class used to signal the end of an IterableDataset"""
_IterableDatasetStopIteration = namedtuple('_IterableDatasetStopIteration', ['worker_id'])
r"""Dummy class used to resume the fetching when worker reuse is enabled"""
_ResumeIteration = namedtuple('_ResumeIteration', [])
def _worker_loop(dataset_kind, dataset, index_queue, data_queue, done_event,
auto_collation, collate_fn, drop_last, seed, init_fn, worker_id,
num_workers, persistent_workers):
# See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the
# logic of this function.
try:
# Initialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
# module's handlers are executed after Python returns from C low-level
# handlers, likely when the same fatal signal had already happened
# again.
# https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers
signal_handling._set_worker_signal_handlers()
torch.set_num_threads(1)
random.seed(seed)
torch.manual_seed(seed)
global _worker_info
_worker_info = WorkerInfo(id=worker_id, num_workers=num_workers,
seed=seed, dataset=dataset)
from torch.utils.data import _DatasetKind
init_exception = None
try:
if init_fn is not None:
init_fn(worker_id)
fetcher = _DatasetKind.create_fetcher(dataset_kind, dataset, auto_collation, collate_fn, drop_last)
except Exception:
init_exception = ExceptionWrapper(
where="in DataLoader worker process {}".format(worker_id))
# When using Iterable mode, some worker can exit earlier than others due
# to the IterableDataset behaving differently for different workers.
# When such things happen, an `_IterableDatasetStopIteration` object is
# sent over to the main process with the ID of this worker, so that the
# main process won't send more tasks to this worker, and will send
# `None` to this worker to properly exit it.
#
# Note that we cannot set `done_event` from a worker as it is shared
# among all processes. Instead, we set the `iteration_end` flag to
# signify that the iterator is exhausted. When either `done_event` or
# `iteration_end` is set, we skip all processing step and just wait for
# `None`.
iteration_end = False
watchdog = ManagerWatchdog()
while watchdog.is_alive():
try:
r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
except queue.Empty:
continue
if isinstance(r, _ResumeIteration):
# Acknowledge the main process
data_queue.put(r)
iteration_end = False
# Recreate the fetcher for worker-reuse policy
fetcher = _DatasetKind.create_fetcher(
dataset_kind, dataset, auto_collation, collate_fn, drop_last)
continue
elif r is None:
# Received the final signal
assert done_event.is_set() or iteration_end
break
elif done_event.is_set() or iteration_end:
# `done_event` is set. But I haven't received the final signal
# (None) yet. I will keep continuing until get it, and skip the
# processing steps.
continue
idx, index = r
data: Union[_IterableDatasetStopIteration, ExceptionWrapper]
if init_exception is not None:
data = init_exception
init_exception = None
else:
try:
data = fetcher.fetch(index)
except Exception as e:
if isinstance(e, StopIteration) and dataset_kind == _DatasetKind.Iterable:
data = _IterableDatasetStopIteration(worker_id)
# Set `iteration_end`
# (1) to save future `next(...)` calls, and
# (2) to avoid sending multiple `_IterableDatasetStopIteration`s.
iteration_end = True
else:
# It is important that we don't store exc_info in a variable.
# `ExceptionWrapper` does the correct thing.
# See NOTE [ Python Traceback Reference Cycle Problem ]
data = ExceptionWrapper(
where="in DataLoader worker process {}".format(worker_id))
data_queue.put((idx, data))
del data, idx, index, r # save memory
except KeyboardInterrupt:
# Main process will raise KeyboardInterrupt anyways.
pass
if done_event.is_set():
data_queue.cancel_join_thread()
data_queue.close()
|