1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
# ---[ cuda
# Poor man's include guard
if(TARGET torch::cudart)
return()
endif()
# sccache is only supported in CMake master and not in the newest official
# release (3.11.3) yet. Hence we need our own Modules_CUDA_fix to enable sccache.
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_LIST_DIR}/../Modules_CUDA_fix)
# We don't want to statically link cudart, because we rely on it's dynamic linkage in
# python (follow along torch/cuda/__init__.py and usage of cudaGetErrorName).
# Technically, we can link cudart here statically, and link libtorch_python.so
# to a dynamic libcudart.so, but that's just wasteful.
# However, on Windows, if this one gets switched off, the error "cuda: unknown error"
# will be raised when running the following code:
# >>> import torch
# >>> torch.cuda.is_available()
# >>> torch.cuda.current_device()
# More details can be found in the following links.
# https://github.com/pytorch/pytorch/issues/20635
# https://github.com/pytorch/pytorch/issues/17108
if(NOT MSVC)
set(CUDA_USE_STATIC_CUDA_RUNTIME OFF CACHE INTERNAL "")
endif()
# Find CUDA.
find_package(CUDA)
if(NOT CUDA_FOUND)
message(WARNING
"PyTorch: CUDA cannot be found. Depending on whether you are building "
"PyTorch or a PyTorch dependent library, the next warning / error will "
"give you more info.")
set(CAFFE2_USE_CUDA OFF)
return()
endif()
# Enable CUDA language support
set(CUDAToolkit_ROOT "${CUDA_TOOLKIT_ROOT_DIR}")
# Pass clang as host compiler, which according to the docs
# Must be done before CUDA language is enabled, see
# https://cmake.org/cmake/help/v3.15/variable/CMAKE_CUDA_HOST_COMPILER.html
if("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
set(CMAKE_CUDA_HOST_COMPILER "${CMAKE_CXX_COMPILER}")
endif()
enable_language(CUDA)
if("X${CMAKE_CUDA_STANDARD}" STREQUAL "X" )
set(CMAKE_CUDA_STANDARD ${CMAKE_CXX_STANDARD})
endif()
set(CMAKE_CUDA_STANDARD_REQUIRED ON)
# CMP0074 - find_package will respect <PackageName>_ROOT variables
cmake_policy(PUSH)
if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.12.0)
cmake_policy(SET CMP0074 NEW)
endif()
find_package(CUDAToolkit REQUIRED)
cmake_policy(POP)
if(NOT CMAKE_CUDA_COMPILER_VERSION VERSION_EQUAL CUDAToolkit_VERSION)
message(FATAL_ERROR "Found two conflicting CUDA versions:\n"
"V${CMAKE_CUDA_COMPILER_VERSION} in '${CUDA_INCLUDE_DIRS}' and\n"
"V${CUDAToolkit_VERSION} in '${CUDAToolkit_INCLUDE_DIRS}'")
endif()
message(STATUS "PyTorch: CUDA detected: " ${CUDA_VERSION})
message(STATUS "PyTorch: CUDA nvcc is: " ${CUDA_NVCC_EXECUTABLE})
message(STATUS "PyTorch: CUDA toolkit directory: " ${CUDA_TOOLKIT_ROOT_DIR})
if(CUDA_VERSION VERSION_LESS 11.0)
message(FATAL_ERROR "PyTorch requires CUDA 11.0 or above.")
endif()
if(CUDA_FOUND)
# Sometimes, we may mismatch nvcc with the CUDA headers we are
# compiling with, e.g., if a ccache nvcc is fed to us by CUDA_NVCC_EXECUTABLE
# but the PATH is not consistent with CUDA_HOME. It's better safe
# than sorry: make sure everything is consistent.
if(MSVC AND CMAKE_GENERATOR MATCHES "Visual Studio")
# When using Visual Studio, it attempts to lock the whole binary dir when
# `try_run` is called, which will cause the build to fail.
string(RANDOM BUILD_SUFFIX)
set(PROJECT_RANDOM_BINARY_DIR "${PROJECT_BINARY_DIR}/${BUILD_SUFFIX}")
else()
set(PROJECT_RANDOM_BINARY_DIR "${PROJECT_BINARY_DIR}")
endif()
set(file "${PROJECT_BINARY_DIR}/detect_cuda_version.cc")
file(WRITE ${file} ""
"#include <cuda.h>\n"
"#include <cstdio>\n"
"int main() {\n"
" printf(\"%d.%d\", CUDA_VERSION / 1000, (CUDA_VERSION / 10) % 100);\n"
" return 0;\n"
"}\n"
)
if(NOT CMAKE_CROSSCOMPILING)
try_run(run_result compile_result ${PROJECT_RANDOM_BINARY_DIR} ${file}
CMAKE_FLAGS "-DINCLUDE_DIRECTORIES=${CUDA_INCLUDE_DIRS}"
LINK_LIBRARIES ${CUDA_LIBRARIES}
RUN_OUTPUT_VARIABLE cuda_version_from_header
COMPILE_OUTPUT_VARIABLE output_var
)
if(NOT compile_result)
message(FATAL_ERROR "PyTorch: Couldn't determine version from header: " ${output_var})
endif()
message(STATUS "PyTorch: Header version is: " ${cuda_version_from_header})
if(NOT cuda_version_from_header STREQUAL ${CUDA_VERSION_STRING})
# Force CUDA to be processed for again next time
# TODO: I'm not sure if this counts as an implementation detail of
# FindCUDA
set(${cuda_version_from_findcuda} ${CUDA_VERSION_STRING})
unset(CUDA_TOOLKIT_ROOT_DIR_INTERNAL CACHE)
# Not strictly necessary, but for good luck.
unset(CUDA_VERSION CACHE)
# Error out
message(FATAL_ERROR "FindCUDA says CUDA version is ${cuda_version_from_findcuda} (usually determined by nvcc), "
"but the CUDA headers say the version is ${cuda_version_from_header}. This often occurs "
"when you set both CUDA_HOME and CUDA_NVCC_EXECUTABLE to "
"non-standard locations, without also setting PATH to point to the correct nvcc. "
"Perhaps, try re-running this command again with PATH=${CUDA_TOOLKIT_ROOT_DIR}/bin:$PATH. "
"See above log messages for more diagnostics, and see https://github.com/pytorch/pytorch/issues/8092 for more details.")
endif()
endif()
endif()
# ---[ CUDA libraries wrapper
# find lbnvrtc.so
set(CUDA_NVRTC_LIB "${CUDA_nvrtc_LIBRARY}" CACHE FILEPATH "")
if(CUDA_NVRTC_LIB AND NOT CUDA_NVRTC_SHORTHASH)
find_package(Python COMPONENTS Interpreter)
execute_process(
COMMAND Python::Interpreter -c
"import hashlib;hash=hashlib.sha256();hash.update(open('${CUDA_NVRTC_LIB}','rb').read());print(hash.hexdigest()[:8])"
RESULT_VARIABLE _retval
OUTPUT_VARIABLE CUDA_NVRTC_SHORTHASH)
if(NOT _retval EQUAL 0)
message(WARNING "Failed to compute shorthash for libnvrtc.so")
set(CUDA_NVRTC_SHORTHASH "XXXXXXXX")
else()
string(STRIP "${CUDA_NVRTC_SHORTHASH}" CUDA_NVRTC_SHORTHASH)
message(STATUS "${CUDA_NVRTC_LIB} shorthash is ${CUDA_NVRTC_SHORTHASH}")
endif()
endif()
# Create new style imported libraries.
# Several of these libraries have a hardcoded path if CAFFE2_STATIC_LINK_CUDA
# is set. This path is where sane CUDA installations have their static
# libraries installed. This flag should only be used for binary builds, so
# end-users should never have this flag set.
# cuda
add_library(caffe2::cuda INTERFACE IMPORTED)
set_property(
TARGET caffe2::cuda PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cuda_driver)
# cudart
add_library(torch::cudart INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA)
set_property(
TARGET torch::cudart PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cudart_static)
else()
set_property(
TARGET torch::cudart PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cudart)
endif()
# nvToolsExt
if(USE_SYSTEM_NVTX)
find_path(nvtx3_dir NAMES nvtx3)
else()
find_path(nvtx3_dir NAMES nvtx3 PATHS "${PROJECT_SOURCE_DIR}/third_party/NVTX/c/include" NO_DEFAULT_PATH)
endif()
find_package_handle_standard_args(nvtx3 DEFAULT_MSG nvtx3_dir)
add_library(torch::nvtoolsext INTERFACE IMPORTED)
set_property(TARGET torch::nvtoolsext PROPERTY INTERFACE_LINK_LIBRARIES CUDA::nvToolsExt)
# cublas
add_library(caffe2::cublas INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA AND NOT WIN32)
set_property(
TARGET caffe2::cublas PROPERTY INTERFACE_LINK_LIBRARIES
# NOTE: cublas is always linked dynamically
CUDA::cublas CUDA::cublasLt)
set_property(
TARGET caffe2::cublas APPEND PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cudart_static rt)
else()
set_property(
TARGET caffe2::cublas PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cublas CUDA::cublasLt)
endif()
# cudnn interface
# static linking is handled by USE_STATIC_CUDNN environment variable
if(CAFFE2_USE_CUDNN)
if(USE_STATIC_CUDNN)
set(CUDNN_STATIC ON CACHE BOOL "")
else()
set(CUDNN_STATIC OFF CACHE BOOL "")
endif()
find_package(CUDNN)
if(NOT CUDNN_FOUND)
message(WARNING
"Cannot find cuDNN library. Turning the option off")
set(CAFFE2_USE_CUDNN OFF)
else()
if(CUDNN_VERSION VERSION_LESS "8.1.0")
message(FATAL_ERROR "PyTorch requires cuDNN 8.1 and above.")
endif()
endif()
add_library(torch::cudnn INTERFACE IMPORTED)
target_include_directories(torch::cudnn INTERFACE ${CUDNN_INCLUDE_PATH})
if(CUDNN_STATIC AND NOT WIN32)
target_link_options(torch::cudnn INTERFACE
"-Wl,--exclude-libs,libcudnn_static.a")
else()
target_link_libraries(torch::cudnn INTERFACE ${CUDNN_LIBRARY_PATH})
endif()
else()
message(STATUS "USE_CUDNN is set to 0. Compiling without cuDNN support")
endif()
if(CAFFE2_USE_CUSPARSELT)
find_package(CUSPARSELT)
if(NOT CUSPARSELT_FOUND)
message(WARNING
"Cannot find cuSPARSELt library. Turning the option off")
set(CAFFE2_USE_CUSPARSELT OFF)
else()
add_library(torch::cusparselt INTERFACE IMPORTED)
target_include_directories(torch::cusparselt INTERFACE ${CUSPARSELT_INCLUDE_PATH})
target_link_libraries(torch::cusparselt INTERFACE ${CUSPARSELT_LIBRARY_PATH})
endif()
else()
message(STATUS "USE_CUSPARSELT is set to 0. Compiling without cuSPARSELt support")
endif()
if(USE_CUDSS)
find_package(CUDSS)
if(NOT CUDSS_FOUND)
message(WARNING
"Cannot find CUDSS library. Turning the option off")
set(USE_CUDSS OFF)
else()
add_library(torch::cudss INTERFACE IMPORTED)
target_include_directories(torch::cudss INTERFACE ${CUDSS_INCLUDE_PATH})
target_link_libraries(torch::cudss INTERFACE ${CUDSS_LIBRARY_PATH})
endif()
else()
message(STATUS "USE_CUDSS is set to 0. Compiling without cuDSS support")
endif()
# cufile
if(CAFFE2_USE_CUFILE)
add_library(torch::cufile INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA AND NOT WIN32)
set_property(
TARGET torch::cufile PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cuFile_static)
else()
set_property(
TARGET torch::cufile PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cuFile)
endif()
else()
message(STATUS "USE_CUFILE is set to 0. Compiling without cuFile support")
endif()
# curand
add_library(caffe2::curand INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA AND NOT WIN32)
set_property(
TARGET caffe2::curand PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::curand_static)
else()
set_property(
TARGET caffe2::curand PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::curand)
endif()
# cufft
add_library(caffe2::cufft INTERFACE IMPORTED)
if(CAFFE2_STATIC_LINK_CUDA AND NOT WIN32)
set_property(
TARGET caffe2::cufft PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cufft_static_nocallback)
else()
set_property(
TARGET caffe2::cufft PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::cufft)
endif()
# nvrtc
add_library(caffe2::nvrtc INTERFACE IMPORTED)
set_property(
TARGET caffe2::nvrtc PROPERTY INTERFACE_LINK_LIBRARIES
CUDA::nvrtc caffe2::cuda)
# Add onnx namepsace definition to nvcc
if(ONNX_NAMESPACE)
list(APPEND CUDA_NVCC_FLAGS "-DONNX_NAMESPACE=${ONNX_NAMESPACE}")
else()
list(APPEND CUDA_NVCC_FLAGS "-DONNX_NAMESPACE=onnx_c2")
endif()
# Don't activate VC env again for Ninja generators with MSVC on Windows if CUDAHOSTCXX is not defined
# by adding --use-local-env.
if(MSVC AND CMAKE_GENERATOR STREQUAL "Ninja" AND NOT DEFINED ENV{CUDAHOSTCXX})
list(APPEND CUDA_NVCC_FLAGS "--use-local-env")
endif()
# setting nvcc arch flags
torch_cuda_get_nvcc_gencode_flag(NVCC_FLAGS_EXTRA)
# CMake 3.18 adds integrated support for architecture selection, but we can't rely on it
set(CMAKE_CUDA_ARCHITECTURES OFF)
list(APPEND CUDA_NVCC_FLAGS ${NVCC_FLAGS_EXTRA})
message(STATUS "Added CUDA NVCC flags for: ${NVCC_FLAGS_EXTRA}")
# disable some nvcc diagnostic that appears in boost, glog, glags, opencv, etc.
foreach(diag cc_clobber_ignored
field_without_dll_interface
base_class_has_different_dll_interface
dll_interface_conflict_none_assumed
dll_interface_conflict_dllexport_assumed
bad_friend_decl)
list(APPEND SUPPRESS_WARNING_FLAGS --diag_suppress=${diag})
endforeach()
string(REPLACE ";" "," SUPPRESS_WARNING_FLAGS "${SUPPRESS_WARNING_FLAGS}")
list(APPEND CUDA_NVCC_FLAGS -Xcudafe ${SUPPRESS_WARNING_FLAGS})
set(CUDA_PROPAGATE_HOST_FLAGS_BLOCKLIST "-Werror")
if(MSVC)
list(APPEND CUDA_NVCC_FLAGS "--Werror" "cross-execution-space-call")
list(APPEND CUDA_NVCC_FLAGS "--no-host-device-move-forward")
endif()
# Debug and Release symbol support
if(MSVC)
if(${CAFFE2_USE_MSVC_STATIC_RUNTIME})
string(APPEND CMAKE_CUDA_FLAGS_DEBUG " -Xcompiler /MTd")
string(APPEND CMAKE_CUDA_FLAGS_MINSIZEREL " -Xcompiler /MT")
string(APPEND CMAKE_CUDA_FLAGS_RELEASE " -Xcompiler /MT")
string(APPEND CMAKE_CUDA_FLAGS_RELWITHDEBINFO " -Xcompiler /MT")
else()
string(APPEND CMAKE_CUDA_FLAGS_DEBUG " -Xcompiler /MDd")
string(APPEND CMAKE_CUDA_FLAGS_MINSIZEREL " -Xcompiler /MD")
string(APPEND CMAKE_CUDA_FLAGS_RELEASE " -Xcompiler /MD")
string(APPEND CMAKE_CUDA_FLAGS_RELWITHDEBINFO " -Xcompiler /MD")
endif()
if(CUDA_NVCC_FLAGS MATCHES "Zi")
list(APPEND CUDA_NVCC_FLAGS "-Xcompiler" "-FS")
endif()
elseif(CUDA_DEVICE_DEBUG)
list(APPEND CUDA_NVCC_FLAGS "-g" "-G") # -G enables device code debugging symbols
endif()
# Set expt-relaxed-constexpr to suppress Eigen warnings
list(APPEND CUDA_NVCC_FLAGS "--expt-relaxed-constexpr")
# Set expt-extended-lambda to support lambda on device
list(APPEND CUDA_NVCC_FLAGS "--expt-extended-lambda")
foreach(FLAG ${CUDA_NVCC_FLAGS})
string(FIND "${FLAG}" " " flag_space_position)
if(NOT flag_space_position EQUAL -1)
message(FATAL_ERROR "Found spaces in CUDA_NVCC_FLAGS entry '${FLAG}'")
endif()
string(APPEND CMAKE_CUDA_FLAGS " ${FLAG}")
endforeach()
|