1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
# Owner(s): ["oncall: profiler"]
import os
import unittest
from unittest import skipIf
import torch
import torch.utils.cpp_extension
from torch._environment import is_fbcode
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
if is_fbcode():
import caffe2.test.profiler_test_cpp_thread_lib as cpp # @manual=//caffe2/test:profiler_test_cpp_thread_lib
else:
# cpp extensions use relative paths. Those paths are relative to
# this file, so we'll change the working directory temporarily
old_working_dir = os.getcwd()
os.chdir(os.path.dirname(os.path.abspath(__file__)))
cpp = torch.utils.cpp_extension.load(
name="profiler_test_cpp_thread_lib",
sources=[
"test_cpp_thread.cpp",
],
verbose=True,
)
# return the working directory (see setUp)
os.chdir(old_working_dir)
KinetoProfiler = None
IterationCount = 5
ActivateIteration = 2
device = None
def blueprint(text):
print(f"\33[34m{text}\33[0m")
# onIterationStart() will be called by C++ training engine in cpp_thread_test_lib.cpp
class PythonProfilerEventHandler(cpp.ProfilerEventHandler):
def onIterationStart(self, iteration: int) -> None:
global KinetoProfiler, IterationCount
# it is important to start the profiler on the same thread that step() is called
# and yes, onIterationStart() will always be called on the same thread
if iteration == 0:
# this also means step() starts on iteration 1, not 0
KinetoProfiler.start()
blueprint("starting kineto profiler")
elif iteration == IterationCount - 1:
KinetoProfiler.stop()
blueprint("stopping kineto profiler")
else:
blueprint("stepping kineto profiler")
KinetoProfiler.step()
def emulateTraining(self, iteration: int, thread_id: int) -> None:
global device
# blueprint(f"training iteration {iteration} in thread {thread_id}")
torch_device = getattr(torch, device)
assert hasattr(torch_device, "synchronize")
sync_func = torch_device.synchronize
with torch.autograd.profiler.record_function("user_function"):
a = torch.ones(1, device=device)
b = torch.ones(1, device=device)
torch.add(a, b).cpu()
sync_func()
class CppThreadTestCUDA(TestCase):
ThreadCount = 20 # set to 2 for debugging
EventHandler = None
TraceObject = None
@classmethod
def setUpClass(cls) -> None:
super(TestCase, cls).setUpClass()
CppThreadTestCUDA.EventHandler = PythonProfilerEventHandler()
cpp.ProfilerEventHandler.Register(CppThreadTestCUDA.EventHandler)
@classmethod
def tearDownClass(cls):
if not is_fbcode():
torch.testing._internal.common_utils.remove_cpp_extensions_build_root()
def setUp(self) -> None:
if not torch.cuda.is_available():
self.skipTest("Test machine does not have cuda")
global device
device = "cuda"
# this clears off events from initialization
self.start_profiler(False)
cpp.start_threads(1, IterationCount, False)
def start_profiler(self, profile_memory):
global KinetoProfiler
KinetoProfiler = torch.profiler.profile(
schedule=torch.profiler.schedule(
wait=1, warmup=1, active=ActivateIteration, repeat=1
),
on_trace_ready=self.set_trace,
with_stack=True,
profile_memory=profile_memory,
record_shapes=True,
)
def set_trace(self, trace_obj) -> None:
CppThreadTestCUDA.TraceObject = trace_obj
def assert_text(self, condition, text, msg):
if condition:
print(f"\33[32m{text}\33[0m")
else:
print(f"\33[31m{text}\33[0m")
self.assertTrue(condition, msg)
def check_trace(self, expected, mem=False) -> None:
blueprint("verifying trace")
event_list = CppThreadTestCUDA.TraceObject.events()
for key, values in expected.items():
count = values[0]
min_count = count * (ActivateIteration - 1)
device = values[1]
filtered = filter(
lambda ev: ev.name == key
and str(ev.device_type) == f"DeviceType.{device}",
event_list,
)
if mem:
actual = 0
for ev in filtered:
sev = str(ev)
has_cuda_memory_usage = (
sev.find("cuda_memory_usage=0 ") < 0
and sev.find("cuda_memory_usage=") > 0
)
if has_cuda_memory_usage:
actual += 1
self.assert_text(
actual >= min_count,
f"{key}: {actual} >= {min_count}",
"not enough event with cuda_memory_usage set",
)
else:
actual = len(list(filtered))
if count == 1: # test_without
count *= ActivateIteration
self.assert_text(
actual == count,
f"{key}: {actual} == {count}",
"baseline event count incorrect",
)
else:
self.assert_text(
actual >= min_count,
f"{key}: {actual} >= {min_count}",
"not enough event recorded",
)
@skipIf(
IS_WINDOWS,
"Failing on windows cuda, see https://github.com/pytorch/pytorch/pull/130037 for slightly more context",
)
def test_with_enable_profiler_in_child_thread_cuda(self) -> None:
self.start_profiler(False)
cpp.start_threads(self.ThreadCount, IterationCount, True)
self.check_trace(
{
"aten::add": [self.ThreadCount, "CPU"],
"user_function": [self.ThreadCount, "CUDA"],
}
)
@skipIf(
IS_WINDOWS,
"Failing on windows cuda, see https://github.com/pytorch/pytorch/pull/130037 for slightly more context",
)
def test_without_enable_profiler_in_child_thread_cuda(self) -> None:
self.start_profiler(False)
cpp.start_threads(self.ThreadCount, IterationCount, False)
self.check_trace(
{
"aten::add": [1, "CPU"],
"user_function": [1, "CUDA"],
}
)
@skipIf(
IS_WINDOWS,
"Failing on windows cuda, see https://github.com/pytorch/pytorch/pull/130037 for slightly more context",
)
def test_profile_memory_cuda(self) -> None:
self.start_profiler(True)
cpp.start_threads(self.ThreadCount, IterationCount, True)
self.check_trace(
{
"aten::add": [self.ThreadCount, "CPU"],
},
mem=True,
)
# Here duplicate the CppThreadTest to enable the xpu cases because the
# instantiate_device_type_tests will call class method setUpClass.
# In function setUpClass, the instantiated class(e.g CppThreadTestCPU, CppThreadTestXPU)
# needs to be called to get it member EventHandler, while in this period,
# the input class in argument cls is CppThreadTest, which is not defined any more.
# We cannot detect which instantiated class is being created in setUpClass, so duplicate here
# for enabling xpu test cases
class CppThreadTestXPU(TestCase):
ThreadCount = 20 # set to 2 for debugging
EventHandler = None
TraceObject = None
@classmethod
def setUpClass(cls) -> None:
super(TestCase, cls).setUpClass()
CppThreadTestXPU.EventHandler = PythonProfilerEventHandler()
cpp.ProfilerEventHandler.Register(CppThreadTestXPU.EventHandler)
@classmethod
def tearDownClass(cls):
if not is_fbcode():
torch.testing._internal.common_utils.remove_cpp_extensions_build_root()
def setUp(self) -> None:
if not torch.xpu.is_available():
self.skipTest("Test machine does not have xpu")
global device
device = "xpu"
# this clears off events from initialization
self.start_profiler(False)
cpp.start_threads(1, IterationCount, False)
def start_profiler(self, profile_memory):
global KinetoProfiler
KinetoProfiler = torch.profiler.profile(
schedule=torch.profiler.schedule(
wait=1, warmup=1, active=ActivateIteration, repeat=1
),
on_trace_ready=self.set_trace,
with_stack=True,
profile_memory=profile_memory,
record_shapes=True,
)
def set_trace(self, trace_obj) -> None:
CppThreadTestXPU.TraceObject = trace_obj
def assert_text(self, condition, text, msg):
if condition:
print(f"\33[32m{text}\33[0m")
else:
print(f"\33[31m{text}\33[0m")
self.assertTrue(condition, msg)
def check_trace(self, expected, mem=False) -> None:
blueprint("verifying trace")
event_list = CppThreadTestXPU.TraceObject.events()
for key, values in expected.items():
count = values[0]
min_count = count * (ActivateIteration - 1)
device = values[1]
filtered = filter(
lambda ev: ev.name == key
and str(ev.device_type) == f"DeviceType.{device}",
event_list,
)
if mem:
actual = 0
for ev in filtered:
sev = str(ev)
has_cuda_memory_usage = (
sev.find("xpu_memory_usage=0 ") < 0
and sev.find("xpu_memory_usage=") > 0
)
if has_cuda_memory_usage:
actual += 1
self.assert_text(
actual >= min_count,
f"{key}: {actual} >= {min_count}",
"not enough event with xpu_memory_usage set",
)
else:
actual = len(list(filtered))
if count == 1: # test_without
count *= ActivateIteration
self.assert_text(
actual == count,
f"{key}: {actual} == {count}",
"baseline event count incorrect",
)
else:
self.assert_text(
actual >= min_count,
f"{key}: {actual} >= {min_count}",
"not enough event recorded",
)
@unittest.skip(
reason="The XPU Profiler will not cover this case for now. Will support it in next period."
)
def test_with_enable_profiler_in_child_thread_xpu(self) -> None:
self.start_profiler(False)
cpp.start_threads(self.ThreadCount, IterationCount, True)
self.check_trace(
{
"aten::add": [self.ThreadCount, "CPU"],
"user_function": [self.ThreadCount, "XPU"],
}
)
@unittest.skip(
reason="The XPU Profiler will not cover this case for now. Will support it in next period."
)
def test_without_enable_profiler_in_child_thread_xpu(self) -> None:
self.start_profiler(False)
cpp.start_threads(self.ThreadCount, IterationCount, False)
self.check_trace(
{
"aten::add": [1, "CPU"],
"user_function": [1, "XPU"],
}
)
@unittest.skip(
reason="The XPU Profiler will not cover this case for now. Will support it in next period."
)
def test_profile_memory_xpu(self) -> None:
self.start_profiler(True)
cpp.start_threads(self.ThreadCount, IterationCount, True)
self.check_trace(
{
"aten::add": [self.ThreadCount, "CPU"],
},
mem=True,
)
if __name__ == "__main__":
run_tests()
|