File: __init__.py

package info (click to toggle)
pytorch 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 161,668 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (162 lines) | stat: -rw-r--r-- 4,521 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# mypy: allow-untyped-defs
import torch

# The quantized modules use `torch.nn` and `torch.ao.nn.quantizable`
# packages. However, the `quantizable` package uses "lazy imports"
# to avoid circular dependency.
# Hence we need to include it here to make sure it is resolved before
# they are used in the modules.
import torch.ao.nn.quantizable
from torch.nn.modules.pooling import MaxPool2d

from .activation import (
    ELU,
    Hardswish,
    LeakyReLU,
    MultiheadAttention,
    PReLU,
    ReLU6,
    Sigmoid,
    Softmax,
)
from .batchnorm import BatchNorm2d, BatchNorm3d
from .conv import (
    Conv1d,
    Conv2d,
    Conv3d,
    ConvTranspose1d,
    ConvTranspose2d,
    ConvTranspose3d,
)
from .dropout import Dropout
from .embedding_ops import Embedding, EmbeddingBag
from .functional_modules import FloatFunctional, FXFloatFunctional, QFunctional
from .linear import Linear
from .normalization import (
    GroupNorm,
    InstanceNorm1d,
    InstanceNorm2d,
    InstanceNorm3d,
    LayerNorm,
)
from .rnn import LSTM


__all__ = [
    "BatchNorm2d",
    "BatchNorm3d",
    "Conv1d",
    "Conv2d",
    "Conv3d",
    "ConvTranspose1d",
    "ConvTranspose2d",
    "ConvTranspose3d",
    "DeQuantize",
    "ELU",
    "Embedding",
    "EmbeddingBag",
    "GroupNorm",
    "Hardswish",
    "InstanceNorm1d",
    "InstanceNorm2d",
    "InstanceNorm3d",
    "LayerNorm",
    "LeakyReLU",
    "Linear",
    "LSTM",
    "MultiheadAttention",
    "Quantize",
    "ReLU6",
    "Sigmoid",
    "Softmax",
    "Dropout",
    "PReLU",
    # Wrapper modules
    "FloatFunctional",
    "FXFloatFunctional",
    "QFunctional",
]


class Quantize(torch.nn.Module):
    r"""Quantizes an incoming tensor

    Args:
     `scale`: scale of the output Quantized Tensor
     `zero_point`: zero_point of output Quantized Tensor
     `dtype`: data type of output Quantized Tensor
     `factory_kwargs`: Dictionary of kwargs used for configuring initialization
         of internal buffers. Currently, `device` and `dtype` are supported.
         Example: `factory_kwargs={'device': 'cuda', 'dtype': torch.float64}`
         will initialize internal buffers as type `torch.float64` on the current CUDA device.
         Note that `dtype` only applies to floating-point buffers.

    Examples::
        >>> t = torch.tensor([[1., -1.], [1., -1.]])
        >>> scale, zero_point, dtype = 1.0, 2, torch.qint8
        >>> qm = Quantize(scale, zero_point, dtype)
        >>> # xdoctest: +SKIP
        >>> qt = qm(t)
        >>> print(qt)
        tensor([[ 1., -1.],
                [ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2)
    """

    scale: torch.Tensor
    zero_point: torch.Tensor

    def __init__(self, scale, zero_point, dtype, factory_kwargs=None):
        factory_kwargs = torch.nn.factory_kwargs(factory_kwargs)
        super().__init__()
        self.register_buffer("scale", torch.tensor([scale], **factory_kwargs))
        self.register_buffer(
            "zero_point",
            torch.tensor(
                [zero_point],
                dtype=torch.long,
                **{k: v for k, v in factory_kwargs.items() if k != "dtype"},
            ),
        )
        self.dtype = dtype

    def forward(self, X):
        return torch.quantize_per_tensor(
            X, float(self.scale), int(self.zero_point), self.dtype
        )

    @staticmethod
    def from_float(mod, use_precomputed_fake_quant=False):
        assert hasattr(mod, "activation_post_process")
        scale, zero_point = mod.activation_post_process.calculate_qparams()
        return Quantize(
            scale.float().item(),
            zero_point.long().item(),
            mod.activation_post_process.dtype,
        )

    def extra_repr(self):
        return f"scale={self.scale}, zero_point={self.zero_point}, dtype={self.dtype}"


class DeQuantize(torch.nn.Module):
    r"""Dequantizes an incoming tensor

    Examples::
        >>> input = torch.tensor([[1., -1.], [1., -1.]])
        >>> scale, zero_point, dtype = 1.0, 2, torch.qint8
        >>> qm = Quantize(scale, zero_point, dtype)
        >>> # xdoctest: +SKIP
        >>> quantized_input = qm(input)
        >>> dqm = DeQuantize()
        >>> dequantized = dqm(quantized_input)
        >>> print(dequantized)
        tensor([[ 1., -1.],
                [ 1., -1.]], dtype=torch.float32)
    """

    def forward(self, Xq):
        return Xq.dequantize()

    @staticmethod
    def from_float(mod, use_precomputed_fake_quant=False):
        return DeQuantize()