1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# mypy: allow-untyped-defs
import torch
# The quantized modules use `torch.nn` and `torch.ao.nn.quantizable`
# packages. However, the `quantizable` package uses "lazy imports"
# to avoid circular dependency.
# Hence we need to include it here to make sure it is resolved before
# they are used in the modules.
import torch.ao.nn.quantizable
from torch.nn.modules.pooling import MaxPool2d
from .activation import (
ELU,
Hardswish,
LeakyReLU,
MultiheadAttention,
PReLU,
ReLU6,
Sigmoid,
Softmax,
)
from .batchnorm import BatchNorm2d, BatchNorm3d
from .conv import (
Conv1d,
Conv2d,
Conv3d,
ConvTranspose1d,
ConvTranspose2d,
ConvTranspose3d,
)
from .dropout import Dropout
from .embedding_ops import Embedding, EmbeddingBag
from .functional_modules import FloatFunctional, FXFloatFunctional, QFunctional
from .linear import Linear
from .normalization import (
GroupNorm,
InstanceNorm1d,
InstanceNorm2d,
InstanceNorm3d,
LayerNorm,
)
from .rnn import LSTM
__all__ = [
"BatchNorm2d",
"BatchNorm3d",
"Conv1d",
"Conv2d",
"Conv3d",
"ConvTranspose1d",
"ConvTranspose2d",
"ConvTranspose3d",
"DeQuantize",
"ELU",
"Embedding",
"EmbeddingBag",
"GroupNorm",
"Hardswish",
"InstanceNorm1d",
"InstanceNorm2d",
"InstanceNorm3d",
"LayerNorm",
"LeakyReLU",
"Linear",
"LSTM",
"MultiheadAttention",
"Quantize",
"ReLU6",
"Sigmoid",
"Softmax",
"Dropout",
"PReLU",
# Wrapper modules
"FloatFunctional",
"FXFloatFunctional",
"QFunctional",
]
class Quantize(torch.nn.Module):
r"""Quantizes an incoming tensor
Args:
`scale`: scale of the output Quantized Tensor
`zero_point`: zero_point of output Quantized Tensor
`dtype`: data type of output Quantized Tensor
`factory_kwargs`: Dictionary of kwargs used for configuring initialization
of internal buffers. Currently, `device` and `dtype` are supported.
Example: `factory_kwargs={'device': 'cuda', 'dtype': torch.float64}`
will initialize internal buffers as type `torch.float64` on the current CUDA device.
Note that `dtype` only applies to floating-point buffers.
Examples::
>>> t = torch.tensor([[1., -1.], [1., -1.]])
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
>>> qm = Quantize(scale, zero_point, dtype)
>>> # xdoctest: +SKIP
>>> qt = qm(t)
>>> print(qt)
tensor([[ 1., -1.],
[ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2)
"""
scale: torch.Tensor
zero_point: torch.Tensor
def __init__(self, scale, zero_point, dtype, factory_kwargs=None):
factory_kwargs = torch.nn.factory_kwargs(factory_kwargs)
super().__init__()
self.register_buffer("scale", torch.tensor([scale], **factory_kwargs))
self.register_buffer(
"zero_point",
torch.tensor(
[zero_point],
dtype=torch.long,
**{k: v for k, v in factory_kwargs.items() if k != "dtype"},
),
)
self.dtype = dtype
def forward(self, X):
return torch.quantize_per_tensor(
X, float(self.scale), int(self.zero_point), self.dtype
)
@staticmethod
def from_float(mod, use_precomputed_fake_quant=False):
assert hasattr(mod, "activation_post_process")
scale, zero_point = mod.activation_post_process.calculate_qparams()
return Quantize(
scale.float().item(),
zero_point.long().item(),
mod.activation_post_process.dtype,
)
def extra_repr(self):
return f"scale={self.scale}, zero_point={self.zero_point}, dtype={self.dtype}"
class DeQuantize(torch.nn.Module):
r"""Dequantizes an incoming tensor
Examples::
>>> input = torch.tensor([[1., -1.], [1., -1.]])
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
>>> qm = Quantize(scale, zero_point, dtype)
>>> # xdoctest: +SKIP
>>> quantized_input = qm(input)
>>> dqm = DeQuantize()
>>> dequantized = dqm(quantized_input)
>>> print(dequantized)
tensor([[ 1., -1.],
[ 1., -1.]], dtype=torch.float32)
"""
def forward(self, Xq):
return Xq.dequantize()
@staticmethod
def from_float(mod, use_precomputed_fake_quant=False):
return DeQuantize()
|