1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
# mypy: allow-untyped-defs
import torch
def _calculate_meta_reordering_scatter_offsets(m, meta_ncols, meta_dtype, device):
"""
This is PyTorch implementation of main part of reorder_meta()
function, from tools/util/include/cutlass/util/host_reorder.h file
of CUTLASS source tree. Furthermore, CUTLASS template for sparse
GEMM decides upon layout of this matrix, and at the moment for the
sparse GEMM executed on tensor cores, this is layout described by
ColumnMajorInterleaved<2> data structure, in
include/cutlass/layout/matrix.h of CUTLASS source tree. The
reordering of meta matrix into meta_reordered matrix calculated
according to these segments of CUTLASS code is re-implemented here.
Note that this calculation produces offsets for scattering metadata
matrix elements into reordered metadata matrix elements (or,
equivalently, for gathering reordered metadata matrix element back
into metadata matrix elements).
"""
dst_rows = torch.arange(0, m, device=device)[:, None].repeat(1, meta_ncols)
dst_cols = torch.arange(0, meta_ncols, device=device).repeat(m, 1)
# Reorder the rows, then swizzle the 2x2 blocks.
group = 32 if meta_dtype.itemsize == 2 else 16
interweave = 4 if meta_dtype.itemsize == 2 else 2
dst_rows = (
dst_rows // group * group
+ (dst_rows % 8) * interweave
+ (dst_rows % group) // 8
)
topright = ((dst_rows % 2 == 0) & (dst_cols % 2 == 1)).to(torch.int8)
bottomleft = ((dst_rows % 2 == 1) & (dst_cols % 2 == 0)).to(torch.int8)
dst_rows += topright - bottomleft
dst_cols -= topright - bottomleft
# Assumed that meta tensor is to be stored in CUTLASS
# InterleavedColumnMajor layout, and reverse engineered
# corresponding code to store values into this tensor.
interleave = 2
cols_maj = dst_cols // interleave
cols_min = dst_cols % interleave
return (cols_maj * m * interleave + dst_rows * interleave + cols_min).view(-1)
def sparse_semi_structured_from_dense_cutlass(dense):
"""
This function converts dense matrix into sparse semi-structured
representation, producing "compressed" matrix, in the layout used by
CUTLASS backend, and corresponding metadata matrix.
"""
if dense.dim() != 2:
raise RuntimeError(
f"Expected 2-dimensional dense tensor, got {dense.dim()}-dimensional tensor"
)
m, k = dense.shape
device = dense.device
meta_dtype = torch.int8
if dense.dtype == torch.int8:
meta_dtype = torch.int32
elif dense.dtype in [torch.half, torch.bfloat16, torch.float]:
meta_dtype = torch.int16
else:
raise RuntimeError(f"Invalid datatype {dense.dtype} of dense matrix")
quadbits_per_meta_elem = meta_dtype.itemsize * 8 // 4
if quadbits_per_meta_elem not in (4, 8):
raise RuntimeError("Invalid number of elements per meta element calculated")
if meta_dtype == torch.int32:
if m % 16 != 0:
raise RuntimeError(
f"Number of rows of dense matrix {m} must be divisible by 16"
)
else:
if m % 32 != 0:
raise RuntimeError(
f"Number of rows of dense matrix {m} must be divisible by 32"
)
if k % (4 * quadbits_per_meta_elem) != 0:
raise RuntimeError(
f"Number of columns of dense matrix {k} must be divisible by {4 * quadbits_per_meta_elem}"
)
if dense.dtype != torch.float:
ksparse = 4
dense_4 = dense.view(-1, k // ksparse, ksparse)
m0, m1, _m2, m3 = (dense_4 != 0).unbind(-1)
else:
ksparse = 2
dense_2 = dense.view(-1, k // ksparse, ksparse)
m0, _m2 = m1, m3 = (dense_2 != 0).unbind(-1)
meta_ncols = k // (ksparse * quadbits_per_meta_elem)
# Encoding quadruples of True/False values as follows:
# [True, True, False, False] -> 0b0100
# [True, False, True, False] -> 0b1000
# [False, True, True, False] -> 0b1001
# [True, False, False, True ] -> 0b1100
# [False, True, False, True ] -> 0b1101
# [False, False, True, True ] -> 0b1110
# Thus, lower two bits in the encoding are index of the True value
# at the lowest index in the quadruple, and the higher two bits in
# the encoding are index of the other True value in the quadruple.
# In case there are less than two True values, than False value or
# values at some index or indices are considered True for the
# encoding. In case there are more than two True values, then the
# excess True value(s) at some indices are considered False for
# the encoding. The exact encodings used for these cases are as
# follows:
# [False, False, False, False] -> 0b1110
# [False, False, False, True ] -> 0b1110
# [False, False, True, False] -> 0b1110
# [False, True, False, False] -> 0b1001
# [False, True, True, True ] -> 0b1101
# [True, False, False, False] -> 0b1000
# [True, False, True, True ] -> 0b1100
# [True, True, False, True ] -> 0b0100
# [True, True, True, False] -> 0b0100
# [True, True, True, True ] -> 0b0100
# These particular encodings are chosen, with the help of Espresso
# logic minimizer software, for the purpose of minimization of
# corresponding Boolean functions, that translate non-zero flags
# into encoding bits. Note also possible choices for the first
# and last of these encodings were limited only to (0b0100,
# 0b1110), in order to produce valid encodings for 1:2 sparsity
# case.
expr0 = m0 & m1
expr1 = ~m0 & m1
expr2 = ~m0 & ~m1
bit0 = expr1
bit1 = expr2
bit2 = expr0 | expr2 | m3
bit3 = expr1 | ~m1
idxs0 = bit0 | (bit1.to(torch.int64) << 1)
idxs1 = bit2 | (bit3.to(torch.int64) << 1)
if dense.dtype != torch.float:
sparse0 = dense_4.gather(-1, idxs0.unsqueeze(-1)) # type: ignore[possibly-undefined]
sparse1 = dense_4.gather(-1, idxs1.unsqueeze(-1))
sparse = torch.stack((sparse0, sparse1), dim=-1).view(m, k // 2)
else:
sparse = dense_2.gather(-1, idxs0.unsqueeze(-1) // 2).view(m, k // 2) # type: ignore[possibly-undefined]
meta_4 = idxs0 | (idxs1 << 2)
meta_n = meta_4.view((-1, meta_ncols, quadbits_per_meta_elem)).to(meta_dtype)
if quadbits_per_meta_elem == 4:
meta = (
meta_n[:, :, 0]
| (meta_n[:, :, 1] << 4)
| (meta_n[:, :, 2] << 8)
| (meta_n[:, :, 3] << 12)
)
elif quadbits_per_meta_elem == 8:
meta = (
meta_n[:, :, 0]
| (meta_n[:, :, 1] << 4)
| (meta_n[:, :, 2] << 8)
| (meta_n[:, :, 3] << 12)
| (meta_n[:, :, 4] << 16)
| (meta_n[:, :, 5] << 20)
| (meta_n[:, :, 6] << 24)
| (meta_n[:, :, 7] << 28)
)
# Reorder meta tensor elements.
meta_reordered = meta.new_empty((m * meta_ncols,)) # type: ignore[possibly-undefined]
meta_offsets = _calculate_meta_reordering_scatter_offsets(
m, meta_ncols, meta_dtype, device
)
meta_reordered.scatter_(0, meta_offsets, meta.view(-1))
return (sparse, meta_reordered.view(m, meta_ncols))
def sparse_semi_structured_to_dense_cutlass(sparse, meta_reordered):
"""
This function performs reverse of the function above - it
reconstructs dense matrix from a pair of "compressed" matrix, given
in the layout used by CUTLASS backend, and accompanying metadata
matrix.
"""
if sparse.dim() != 2:
raise RuntimeError(
f"Expected 2-dimensional sparse tensor, got {sparse.dim()}-dimensional tensor"
)
m, k = sparse.shape
device = sparse.device
if meta_reordered.dim() != 2:
raise RuntimeError(
f"Expected 2-dimensional meta tensor, got {meta_reordered.dim()}-dimensional tensor"
)
if meta_reordered.device != device:
raise RuntimeError(
f"Expected meta matrix to be on {device} device, got matrix on {meta_reordered.device} device"
)
meta_dtype = meta_reordered.dtype
if meta_dtype not in (torch.int16, torch.int32):
raise RuntimeError(f"Invalid datatype {meta_dtype} of meta matrix")
quadbits_per_meta_elem = meta_dtype.itemsize * 8 // 4
if sparse.dtype != torch.float:
ksparse = 4
else:
ksparse = 2
meta_nrows, meta_ncols = meta_reordered.shape
if meta_nrows != m:
raise RuntimeError(
f"Number of rows of meta matrix {meta_nrows} must be equal to number of columns of spase matrix {m}"
)
if meta_ncols * ksparse * quadbits_per_meta_elem != 2 * k:
raise RuntimeError(
f"Number of columns of sparse matrix {k} different from the {meta_ncols * ksparse * quadbits_per_meta_elem // 2}, "
"expected according to the number of columns of meta matrix"
)
# Undo meta tensor elements reordering.
meta_offsets = _calculate_meta_reordering_scatter_offsets(
m, meta_ncols, meta_dtype, device
)
meta = torch.gather(meta_reordered.view(-1), 0, meta_offsets).view(m, meta_ncols)
# Unpack sparse tensor back to original dense tensor, using
# information provided by meta tensor. Note that torch.float
# datatype is handled pretty much the same as
# torch.half/torch.bfloat16, as metadata for a pair of torch.float
# value is encoded as if underlying 8 bytes contain four
# torch.half/torch.bfloat16 values, where either first two or last
# two are zeros.
meta_2 = torch.empty(
(m, meta_ncols, 2 * quadbits_per_meta_elem),
dtype=meta_dtype,
device=device,
)
if quadbits_per_meta_elem == 4:
meta_2[:, :, 0] = meta & 0b11
meta_2[:, :, 1] = (meta >> 2) & 0b11
meta_2[:, :, 2] = (meta >> 4) & 0b11
meta_2[:, :, 3] = (meta >> 6) & 0b11
meta_2[:, :, 4] = (meta >> 8) & 0b11
meta_2[:, :, 5] = (meta >> 10) & 0b11
meta_2[:, :, 6] = (meta >> 12) & 0b11
meta_2[:, :, 7] = (meta >> 14) & 0b11
elif quadbits_per_meta_elem == 8:
meta_2[:, :, 0] = meta & 0b11
meta_2[:, :, 1] = (meta >> 2) & 0b11
meta_2[:, :, 2] = (meta >> 4) & 0b11
meta_2[:, :, 3] = (meta >> 6) & 0b11
meta_2[:, :, 4] = (meta >> 8) & 0b11
meta_2[:, :, 5] = (meta >> 10) & 0b11
meta_2[:, :, 6] = (meta >> 12) & 0b11
meta_2[:, :, 7] = (meta >> 14) & 0b11
meta_2[:, :, 8] = (meta >> 16) & 0b11
meta_2[:, :, 9] = (meta >> 18) & 0b11
meta_2[:, :, 10] = (meta >> 20) & 0b11
meta_2[:, :, 11] = (meta >> 22) & 0b11
meta_2[:, :, 12] = (meta >> 24) & 0b11
meta_2[:, :, 13] = (meta >> 26) & 0b11
meta_2[:, :, 14] = (meta >> 28) & 0b11
meta_2[:, :, 15] = (meta >> 30) & 0b11
dense_offsets = meta_2.view(-1) + (
torch.arange(0, 2 * m * k // ksparse, device=device) * 4
).view(-1, 1).repeat(1, 2).view(-1)
dense = torch.zeros((m * 2 * k,), dtype=sparse.dtype, device=device)
if sparse.dtype != torch.float:
dense.scatter_(0, dense_offsets, sparse.view(-1))
else:
dense.view(torch.half).scatter_(
0, dense_offsets, sparse.view(torch.half).view(-1)
)
return dense.view(m, 2 * k)
def _sparse_semi_structured_tile(dense):
"""
This function computes a 2:4 sparse tile by greedily taking the largest values.
Since we take the largest values greedily, how the sorting algorithm handles duplicates affects
the ultimate sparsity pattern.
Note that this function does not have the same sorting semantics as our CUDA backend,
which is exposed via `torch._sparse_semi_structured_tile` and thus returns a different pattern.
"""
def greedy_prune_tile(tile):
num_kept_row = [0, 0, 0, 0]
num_kept_col = [0, 0, 0, 0]
for x in tile.flatten().sort(descending=True, stable=True).indices:
r, c = x // 4, x % 4
if num_kept_row[r] < 2 and num_kept_col[c] < 2:
num_kept_row[r] += 1
num_kept_col[c] += 1
else:
tile[r, c] = 0
for batch in dense.unfold(0, 4, 4).unfold(1, 4, 4):
for tile in batch:
greedy_prune_tile(tile)
return dense
def _compute_compressed_swizzled_bitmask(dense):
"""
Calculates the compressed swizzled bitmask from a dense tensor
"""
# first we need to convert the dense tensor to a bitmask
int_bitmask = dense.bool().to(torch.uint8)
# Each thread is responsible for an 8x8 tile, which contains 4 4x4 tiles:
# A, B, C and D, as displayed in the following schema:
# +---+---+
# | A | B |
# +---+---+
# | C | D |
# +---+---+
# we first need to split into the 8x8 tiles
bitmask_8x8_chunks = int_bitmask.unfold(0, 8, 8).unfold(1, 8, 8)
# then we unfold again to get our indivdual 4x4 tiles
bitmask_4x4_chunks = bitmask_8x8_chunks.unfold(2, 4, 4).unfold(3, 4, 4)
# Each 4x4 bitmask defines two 8-bit integers, which encode the sparsity pattern
# of that tile. Note that the least siginificant bit is stored first.
# [1 1 0 0]
# [1 1 0 0] -> 0011 0011 -> 51
# [0 0 1 1] 1100 1100 204
# [0 0 1 1]
# reshape tensor to expand tiles into 8-bit vectors
bitmask_binary_representation = bitmask_4x4_chunks.reshape(
*bitmask_4x4_chunks.shape[:2], 4, 2, 8
)
# to convert from binary representaiton, we can do a matmul with powers of two
powers_of_two = 2 ** torch.arange(8, dtype=torch.float, device="cuda")
# To run on GPU: cast to float to do matmul and then cast back
compressed_swizzled_bitmask = (
bitmask_binary_representation.to(torch.float) @ powers_of_two
).to(torch.uint8)
return compressed_swizzled_bitmask
|