1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
|
# Owner(s): ["oncall: distributed"]
import copy
import itertools
import unittest
from typing import List, Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import fully_shard
from torch.distributed.fsdp._fully_shard._fsdp_init import (
_get_managed_modules,
_get_managed_states,
)
from torch.distributed.fsdp._fully_shard._fsdp_param import ParamModuleInfo
from torch.distributed.fsdp._fully_shard._fsdp_param_group import (
_get_param_module_infos,
)
from torch.distributed.fsdp._init_utils import (
_init_inter_node_process_group,
_init_intra_node_process_group,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.placement_types import _StridedShard
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_fsdp import FSDPTestMultiThread, MLP
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
class TestFullyShardDeviceTensor(FSDPTestMultiThread):
"""Tests that tensor parameters are moved to the expected device."""
@property
def world_size(self) -> int:
return 1
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_move_states_to_device_tensor(self):
model = MLP(8, torch.device("cpu"), with_buffer=True)
for tensor in itertools.chain(model.parameters(), model.buffers()):
self.assertEqual(tensor.device, torch.device("cpu"))
fully_shard(model)
cuda_device = torch.device("cuda", torch.cuda.current_device())
for tensor in itertools.chain(model.parameters(), model.buffers()):
self.assertEqual(tensor.device, cuda_device)
class TestFullyShardDeviceDTensor(FSDPTestMultiThread):
"""Tests that DTensor parameters are moved to the expected device."""
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_move_states_to_device_dtensor_valid(self):
assert self.world_size >= 4, f"{self.world_size}"
dp_size = 2
global_mesh = init_device_mesh(
"cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
model = MLP(8, torch.device("cpu"), with_buffer=True)
parallelize_module(
model,
tp_mesh,
{"in_proj": ColwiseParallel(), "out_proj": RowwiseParallel()},
)
cuda_device = torch.device("cuda", torch.cuda.current_device())
for tensor in itertools.chain(model.parameters(), model.buffers()):
if isinstance(tensor, DTensor):
# DTensor constructor moves to the mesh's device
self.assertEqual(tensor.device, cuda_device)
self.assertEqual(tensor._local_tensor.device, cuda_device)
else:
self.assertEqual(tensor.device, torch.device("cpu"))
fully_shard(model, mesh=dp_mesh)
for tensor in itertools.chain(model.parameters(), model.buffers()):
self.assertEqual(tensor.device, cuda_device)
if isinstance(tensor, DTensor):
self.assertEqual(tensor._local_tensor.device, cuda_device)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_move_states_to_device_dtensor_invalid(self):
assert self.world_size >= 4, f"{self.world_size}"
dp_size = 2
global_cuda_mesh = init_device_mesh(
"cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
global_cpu_mesh = init_device_mesh(
"cpu", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
dp_mesh = global_cuda_mesh["dp"]
tp_mesh = global_cpu_mesh["tp"] # mismatched meshes!
model = MLP(8, torch.device("cpu"), with_buffer=True)
parallelize_module(
model,
tp_mesh,
{"in_proj": ColwiseParallel(), "out_proj": RowwiseParallel()},
)
for tensor in itertools.chain(model.parameters(), model.buffers()):
self.assertEqual(tensor.device, torch.device("cpu"))
if isinstance(tensor, DTensor):
self.assertEqual(tensor._local_tensor.device, torch.device("cpu"))
regex = r"Requires DTensor to have mesh of the same type as the FSDP mesh but got cpu for DTensor and cuda for FSDP"
with self.assertRaisesRegex(ValueError, regex):
fully_shard(model, mesh=dp_mesh)
class TestFullyShardMeshArg(FSDPTestMultiThread):
"""Tests the ``mesh`` argument."""
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_invalid_mesh_ndim(self):
mesh = init_device_mesh("cuda", (self.world_size, 1, 1))
model = MLP(8)
regex = r"fully\_shard expects a 1D or 2D DeviceMesh but got DeviceMesh"
with self.assertRaisesRegex(ValueError, regex):
fully_shard(model, mesh=mesh)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_2d_mesh_without_mesh_dim_names(self):
mesh = init_device_mesh("cuda", (self.world_size // 2, 2))
model = MLP(8)
regex = "Please init the 2D mesh for HSDP with mesh_dim_names specified"
with self.assertRaisesRegex(AssertionError, regex):
fully_shard(model, mesh=mesh)
class TestFullyShardManagedModulesAndStates(FSDPTestMultiThread):
"""Tests getting the managed modules/states for a ``fully_shard`` module."""
@property
def world_size(self) -> int:
return 1
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_modules_single(self):
model = MLP(8)
# Assume calling `fully_shard` on `model`
managed_modules = _get_managed_modules((model,))
expected_managed_modules = list(model.modules())
self._check_managed_modules(managed_modules, expected_managed_modules)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_modules_nested(self):
model = nn.Sequential(*[MLP(8) for _ in range(2)])
fully_shard(model[0])
# Assume calling `fully_shard` on `model`
managed_modules = _get_managed_modules((model,))
expected_managed_modules = list(model[1].modules()) + [model]
self._check_managed_modules(managed_modules, expected_managed_modules)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_modules_nested_fully_shard_and_replicate(self):
model = nn.Sequential(*[MLP(8) for _ in range(3)])
replicate(model[0])
fully_shard(model[2])
# Assume calling `fully_shard` on `model`
managed_modules = _get_managed_modules((model,))
expected_managed_modules = list(model[1].modules()) + [model]
self._check_managed_modules(managed_modules, expected_managed_modules)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_modules_duplicate(self):
mlp = MLP(8)
model = nn.Sequential(mlp, mlp) # duplicate MLP
# Assume calling `fully_shard` on `model`
managed_modules = _get_managed_modules((model,))
# Check that the duplicate module is only counted once
expected_managed_modules = list(mlp.modules()) + [model]
self._check_managed_modules(managed_modules, expected_managed_modules)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_modules_list_of_mlps(self):
model = nn.Sequential(*[MLP(8) for _ in range(5)])
# Assume calling `fully_shard` on `[model[0], model[1], model[2]]`
managed_modules = _get_managed_modules((model[0], model[1], model[2]))
expected_managed_modules = (
list(model[0].modules())
+ list(model[1].modules())
+ list(model[2].modules())
)
self._check_managed_modules(managed_modules, expected_managed_modules)
# Assume calling `fully_shard` on `[model[1], model[3]]`
managed_modules = _get_managed_modules((model[1], model[3]))
expected_managed_modules = list(model[1].modules()) + list(model[3].modules())
def _check_managed_modules(
self,
managed_modules: List[nn.Module],
expected_managed_modules: List[nn.Module],
):
self.assertEqual(len(managed_modules), len(expected_managed_modules))
# Check set comparison since we do not require anything about the order
self.assertEqual(set(managed_modules), set(expected_managed_modules))
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_states_shared_params_and_buffers(self):
model = nn.Sequential(*[MLP(8, with_buffer=True) for _ in range(3)])
model[0].in_proj.weight = model[1].in_proj.weight
model[2].in_proj.weight = model[1].in_proj.weight
model[1].buffer = model[2].buffer
# Assume calling `fully_shard` on `model`
managed_modules = _get_managed_modules((model,))
params, buffers = _get_managed_states(managed_modules)
expected_params = list(model.parameters()) # de-dups shared
expected_buffers = list(model.buffers()) # de-dups shared
self._check_managed_states(params, buffers, expected_params, expected_buffers)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_states_nested_fully_shard(self):
model = nn.Sequential(*[MLP(8, with_buffer=True) for _ in range(2)])
fully_shard(model[0])
# Assume calling `fully_shard` on `model`
managed_modules = _get_managed_modules((model,))
params, buffers = _get_managed_states(managed_modules)
expected_params = list(model[1].parameters())
expected_buffers = list(model[1].buffers())
self._check_managed_states(params, buffers, expected_params, expected_buffers)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_managed_states_list_of_mlps(self):
model = nn.Sequential(*[MLP(8, with_buffer=True) for _ in range(5)])
# Assume calling `fully_shard` on `[model[0], model[1], model[2]]`
managed_modules = _get_managed_modules((model[0], model[1], model[2]))
params, buffers = _get_managed_states(managed_modules)
expected_params = (
list(model[0].parameters())
+ list(model[1].parameters())
+ list(model[2].parameters())
)
expected_buffers = (
list(model[0].buffers())
+ list(model[1].buffers())
+ list(model[2].buffers())
)
self._check_managed_states(params, buffers, expected_params, expected_buffers)
def _check_managed_states(
self,
managed_params: List[nn.Parameter],
managed_buffers: List[torch.Tensor],
expected_managed_params: List[nn.Parameter],
expected_managed_buffers: List[torch.Tensor],
):
self.assertEqual(len(managed_params), len(expected_managed_params))
self.assertEqual(len(managed_buffers), len(expected_managed_buffers))
self.assertEqual(set(managed_params), set(expected_managed_params))
self.assertEqual(set(managed_buffers), set(expected_managed_buffers))
class TestFullyShardParamModuleInfos(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 2
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_get_param_module_infos_shared_params(self):
model = nn.Sequential(*[MLP(8) for _ in range(2)])
model[0].in_proj.weight = model[1].in_proj.weight
managed_modules = _get_managed_modules((model,))
params, _ = _get_managed_states(managed_modules)
param_module_infos = _get_param_module_infos(params, model)
self.assertEqual(len(param_module_infos), len(params))
# We expect `params` to already have de-duplicated shared parameters
expected_param_module_infos = [
ParamModuleInfo(model[0].in_proj, "weight", [model[1].in_proj], ["weight"]),
ParamModuleInfo(model[0].in_proj, "bias", [], []),
ParamModuleInfo(model[0].out_proj, "weight", [], []),
ParamModuleInfo(model[0].out_proj, "bias", [], []),
ParamModuleInfo(model[1].in_proj, "bias", [], []),
ParamModuleInfo(model[1].out_proj, "weight", [], []),
ParamModuleInfo(model[1].out_proj, "bias", [], []),
]
self.assertEqual(len(param_module_infos), len(expected_param_module_infos))
self.assertEqual(param_module_infos, expected_param_module_infos)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_get_param_module_infos_duplicates(self):
mlp = MLP(8)
model = nn.Sequential(mlp, mlp) # shared MLP
params = list(model.parameters())
param_module_infos = _get_param_module_infos(params, model)
self.assertEqual(len(param_module_infos), len(params))
expected_param_module_infos = [
ParamModuleInfo(mlp.in_proj, "weight", [mlp.in_proj], ["weight"]),
ParamModuleInfo(mlp.in_proj, "bias", [mlp.in_proj], ["bias"]),
ParamModuleInfo(mlp.out_proj, "weight", [mlp.out_proj], ["weight"]),
ParamModuleInfo(mlp.out_proj, "bias", [mlp.out_proj], ["bias"]),
]
self.assertEqual(len(param_module_infos), len(expected_param_module_infos))
self.assertEqual(param_module_infos, expected_param_module_infos)
model = nn.Sequential(*[MLP(8) for _ in range(2)])
model[0].in_proj = model[1].in_proj # shared in-projection
params = list(model.parameters())
param_module_infos = _get_param_module_infos(params, model)
self.assertEqual(len(param_module_infos), len(params))
expected_param_module_infos = [
ParamModuleInfo(model[0].in_proj, "weight", [model[1].in_proj], ["weight"]),
ParamModuleInfo(mlp.in_proj, "bias", [], []),
ParamModuleInfo(mlp.out_proj, "weight", [], []),
ParamModuleInfo(mlp.out_proj, "bias", [], []),
]
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_get_param_module_infos_list_of_mlps(self):
model = nn.Sequential(*[MLP(8) for _ in range(2)])
managed_modules = _get_managed_modules((model[0], model[1]))
params, _ = _get_managed_states(managed_modules)
param_module_infos = _get_param_module_infos(params, model)
self.assertEqual(len(param_module_infos), len(params))
expected_param_module_infos = [
ParamModuleInfo(model[0].in_proj, "weight", [], []),
ParamModuleInfo(model[0].in_proj, "bias", [], []),
ParamModuleInfo(model[0].out_proj, "weight", [], []),
ParamModuleInfo(model[0].out_proj, "bias", [], []),
ParamModuleInfo(model[1].in_proj, "weight", [], []),
ParamModuleInfo(model[1].in_proj, "bias", [], []),
ParamModuleInfo(model[1].out_proj, "weight", [], []),
ParamModuleInfo(model[1].out_proj, "bias", [], []),
]
self.assertEqual(len(param_module_infos), len(expected_param_module_infos))
self.assertEqual(param_module_infos, expected_param_module_infos)
class TestFullyShardShardedParameterTensor(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 2
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_shard_tensor_parameters(self):
# Use odd dim sizes to test uneven shards
model = nn.Sequential(*[MLP(3, dim_multiplier=3) for _ in range(3)])
orig_params = [param.detach().clone() for param in model.parameters()]
fully_shard(model)
sharded_params = list(model.parameters())
self._check_1d_sharded_parameters(orig_params, sharded_params)
model = nn.Sequential(*[MLP(3, dim_multiplier=3) for _ in range(3)])
model[0].in_proj = model[1].in_proj
orig_params = [param.detach().clone() for param in model.parameters()]
fully_shard(model)
sharded_params = list(model.parameters())
self._check_1d_sharded_parameters(orig_params, sharded_params)
def _check_1d_sharded_parameters(
self, orig_params: List[nn.Parameter], sharded_params: List[nn.Parameter]
):
self.assertEqual(len(orig_params), len(sharded_params))
global_mesh = init_device_mesh("cuda", (self.world_size,))
for orig_param, sharded_param in zip(orig_params, sharded_params):
self.assertIsInstance(sharded_param, DTensor)
self.assertEqual(sharded_param.device_mesh, global_mesh)
self.assertEqual(sharded_param.size(), orig_param.size())
self.assertEqual(sharded_param.stride(), orig_param.stride())
self.assertEqual(sharded_param._spec.placements, (Shard(0),))
chunks = torch.chunk(orig_param, self.world_size, dim=0)
self.assertEqual(sharded_param._local_tensor, chunks[self.rank])
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_raise_scalar_parameter(self):
"""Tests raising an exception when the model has scalar parameters."""
model = nn.Sequential(*[MLP(3, dim_multiplier=3) for _ in range(3)])
model.register_parameter("scalar_p", nn.Parameter(torch.tensor(1.0).cuda()))
with self.assertRaisesRegex(
ValueError, "Change scalar_p to a 1D tensor with numel equal to 1."
):
fully_shard(model)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_raise_noncontiguous_parameter(self):
"""
Tests raising an exception when the model has non-contiguous
parameters. This is due to lack of implementation support.
"""
conv2d = nn.Conv2d(8, 8, 3).to(memory_format=torch.channels_last)
with self.assertRaisesRegex(
NotImplementedError, "FSDP does not support non-contiguous parameters"
):
fully_shard(conv2d)
class TestFullyShardShardedParameterDTensor(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_shard_dtensor_parameters(self):
dp_size = 2 if self.world_size > 2 else 1
global_mesh = init_device_mesh(
"cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
# Use odd dim sizes to test uneven shards
# TODO: change "mlp_dim" back to 9 when uneven sharding
# is supported for FSDP+TP
model = MLP(8, dim_multiplier=3)
orig_params = [param.detach().clone() for param in model.parameters()]
orig_param_names = [param_name for param_name, _ in model.named_parameters()]
parallelize_module(
model,
tp_mesh,
{"in_proj": ColwiseParallel(), "out_proj": RowwiseParallel()},
)
fully_shard(model, mesh=dp_mesh)
sharded_params = list(model.parameters())
self.assertEqual(len(orig_params), len(sharded_params))
for orig_param_name, orig_param, sharded_param in zip(
orig_param_names, orig_params, sharded_params
):
self.assertIsInstance(sharded_param, DTensor)
self.assertEqual(sharded_param.device_mesh, global_mesh)
self.assertEqual(sharded_param.size(), orig_param.size())
self.assertEqual(sharded_param.stride(), orig_param.stride())
if "in_proj" in orig_param_name:
expected_placements = (
_StridedShard(0, split_factor=tp_mesh.size()),
Shard(0),
)
elif "out_proj" in orig_param_name and "weight" in orig_param_name:
expected_placements = (Shard(0), Shard(1))
else:
expected_placements = (Shard(0), Replicate())
self.assertEqual(sharded_param._spec.placements, expected_placements)
class TestFullyShardLazyInit(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 2
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_fully_shard_is_root(self):
"""
Tests that ``_is_root`` is set correctly after lazy initialization.
FSDP(model(
0: MLP(FSDP(in_proj), FSDP(out_proj)),
1: MLP(in_proj, out_proj),
))
"""
model = nn.Sequential(MLP(8), MLP(8))
fully_shard(model[0].in_proj)
fully_shard(model[0].out_proj)
fully_shard(model) # root gets `model[1]`
root_state = fully_shard.state(model)
root_state._lazy_init()
model0_in_proj_state = fully_shard.state(model[0].in_proj)
model0_out_proj_state = fully_shard.state(model[0].out_proj)
self.assertTrue(root_state._is_root)
self.assertFalse(model0_in_proj_state._is_root)
self.assertFalse(model0_out_proj_state._is_root)
all_states = root_state._state_ctx.all_states
self.assertEqual(len(all_states), 3)
self.assertEqual(
all_states, [root_state, model0_in_proj_state, model0_out_proj_state]
)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_fully_shard_module_and_param_fqns(self):
"""
Tests that the module and parameter FQNs are computed correctly after
lazy initialization.
FSDP(model(
0: MLP(FSDP(in_proj), FSDP(out_proj)),
1: MLP(in_proj, out_proj),
))
"""
model = nn.Sequential(MLP(8), MLP(8))
fully_shard(model[0].in_proj)
fully_shard(model[0].out_proj)
fully_shard(model) # root gets `model[1]`
root_state = fully_shard.state(model)
root_state._lazy_init()
root_param_group = root_state._fsdp_param_group
self.assertIsNotNone(root_param_group)
self.assertEqual(root_param_group._module_fqn, "")
root_param_fqns = {
fsdp_param._param_fqn for fsdp_param in root_param_group.fsdp_params
}
self.assertEqual(
root_param_fqns,
{
"1.in_proj.weight",
"1.in_proj.bias",
"1.out_proj.weight",
"1.out_proj.bias",
},
)
model0_in_proj_state = fully_shard.state(model[0].in_proj)
model0_in_proj_param_group = model0_in_proj_state._fsdp_param_group
self.assertIsNotNone(model0_in_proj_param_group)
self.assertEqual(model0_in_proj_param_group._module_fqn, "0.in_proj")
model0_in_proj_param_fqns = {
fsdp_param._param_fqn
for fsdp_param in model0_in_proj_param_group.fsdp_params
}
self.assertEqual(
model0_in_proj_param_fqns, {"0.in_proj.weight", "0.in_proj.bias"}
)
model0_out_proj_state = fully_shard.state(model[0].out_proj)
model0_out_proj_param_group = model0_out_proj_state._fsdp_param_group
self.assertIsNotNone(model0_out_proj_param_group)
self.assertEqual(model0_out_proj_param_group._module_fqn, "0.out_proj")
model0_out_proj_param_fqns = {
fsdp_param._param_fqn
for fsdp_param in model0_out_proj_param_group.fsdp_params
}
self.assertEqual(
model0_out_proj_param_fqns, {"0.out_proj.weight", "0.out_proj.bias"}
)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_fully_shard_double_lazy_init(self):
model = nn.Sequential(MLP(8), MLP(8))
fully_shard(model[0].in_proj)
fully_shard(model[0].out_proj)
fully_shard(model)
root_state = fully_shard.state(model)
model0_in_proj_state = fully_shard.state(model[0].in_proj)
model0_in_proj_state._lazy_init()
regex = (
"FSDP state has already been lazily initialized for 0.in_proj\n"
"FSDP requires running forward through the root module first"
)
with self.assertRaisesRegex(RuntimeError, regex):
root_state._lazy_init()
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_fully_shard_multi_module_root(self):
model = nn.Sequential(MLP(8), MLP(8))
fully_shard([model[0], model[1]])
root_state = fully_shard.state(model[0])
regex = "FSDP requires a single root module but got "
with self.assertRaisesRegex(RuntimeError, regex):
root_state._lazy_init()
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_reset_sharded_param_in_lazy_init(self):
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(3, 3, bias=False)
self.layer2 = nn.Linear(3, 3, bias=False)
self.weight_norm = nn.Parameter(torch.empty(3))
def init_weight_norm(self):
with torch.no_grad():
weight_norm = torch.linalg.norm(
self.layer1.weight, dim=1
) + torch.linalg.norm(self.layer2.weight, dim=1)
model.weight_norm = nn.Parameter(weight_norm)
def forward(self, inp: torch.Tensor) -> torch.Tensor:
out = self.layer1(inp)
out = self.layer2(out)
return out.sum() + self.weight_norm.sum()
with torch.device("meta"):
model = MyModel()
fully_shard(model.layer1)
fully_shard(model.layer2)
fully_shard(model)
model.layer1.to_empty(device="cuda")
model.layer2.to_empty(device="cuda")
model.init_weight_norm()
inp = torch.randn(3, 3, device="cuda")
loss = model(inp).sum()
loss.backward()
class TestFullyShardMetaDeviceInit(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_meta_device_1d_init(self):
default_pg = torch.distributed.distributed_c10d._get_default_group()
mesh = init_device_mesh("cuda", mesh_shape=(default_pg.size(),))
# Test both even sharding (8) and uneven sharding (3)
for mlp_dim in (8, 3):
with torch.device("meta"):
model = nn.Sequential(MLP(mlp_dim, with_buffer=True), MLP(mlp_dim))
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
fully_shard(model[0], mesh=mesh)
fully_shard(model[1], mesh=mesh)
fully_shard(model, mesh=mesh)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
self._test_to_empty_and_reset_parameters(model, mesh, mlp_dim)
# Test that we can call `fully_shard` under meta-device context and
# that `init_device_mesh` call still works
mlp_dim = 8
with torch.device("meta"):
model = nn.Sequential(MLP(mlp_dim, with_buffer=True), MLP(mlp_dim))
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
for module in (model[0], model[1], model):
fully_shard(module)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
self._test_to_empty_and_reset_parameters(model, mesh, mlp_dim)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_meta_device_2d_init(self):
assert self.world_size >= 4, f"{self.world_size}"
dp_size = 2
global_mesh = init_device_mesh(
"cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
# Test both even sharding (8) and uneven sharding (3)
for mlp_dim in (8, 3):
with torch.device("meta"):
model = MLP(mlp_dim, with_buffer=True)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
parallelize_module(
model,
tp_mesh,
{"in_proj": ColwiseParallel(), "out_proj": RowwiseParallel()},
)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
fully_shard(model.in_proj, mesh=dp_mesh)
fully_shard(model.out_proj, mesh=dp_mesh)
fully_shard(model, mesh=dp_mesh)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
self._test_to_empty_and_reset_parameters(model, global_mesh, mlp_dim)
def _test_to_empty_and_reset_parameters(
self, model: nn.Module, mesh: DeviceMesh, mlp_dim: int
):
# Check that we can materialize it on GPU with empty values
device = torch.device("cuda", torch.cuda.current_device())
model.to_empty(device=device)
for param in model.parameters():
self.assertEqual(param.device, device)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
# Check that `reset_parameters()` on each module initializes values
const = 1337
for tensor in itertools.chain(model.parameters(), model.buffers()):
tensor.detach().fill_(const)
for module in model.modules():
if hasattr(module, "reset_parameters"):
module.reset_parameters()
for param in model.parameters():
local_tensor = param.to_local()
if local_tensor.numel() > 0:
self.assertNotEqual(local_tensor, torch.ones_like(local_tensor) * const)
for buffer in model.buffers():
self.assertNotEqual(buffer, torch.ones_like(buffer) * const)
# Check that we can run an iteration without erroring
inp = torch.randn((4, mlp_dim), device="cuda")
model(inp).sum().backward()
optim.step()
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_invalid_meta_device_init(self):
default_pg = torch.distributed.distributed_c10d._get_default_group()
mesh = init_device_mesh("cuda", mesh_shape=(default_pg.size(),))
mlp_dim = 8
with torch.device("meta"):
model = nn.Sequential(MLP(mlp_dim, with_buffer=True), MLP(mlp_dim))
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
fully_shard(model[0], mesh=mesh)
fully_shard(model[1], mesh=mesh)
fully_shard(model, mesh=mesh)
inp = torch.randn((4, mlp_dim), device="cuda")
error_regex = (
"FSDP parameters should be materialized from meta device before training, "
"but the following were still on meta device: "
r"\['0.in_proj.weight', '0.in_proj.bias', '0.out_proj.weight', '0.out_proj.bias'\]"
)
with self.assertRaisesRegex(RuntimeError, error_regex):
model(inp)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_rank0_broadcast_meta_device_init(self):
model_args = ModelArgs(dropout_p=0.0)
# Assume we have a CPU full state dict on rank 0
if self.rank == 0:
torch.manual_seed(42)
ref_model = Transformer(model_args)
full_sd = ref_model.state_dict()
for param in full_sd.values():
self.assertEqual(param.device, torch.device("cpu"))
# Initialize the sharded model on meta device
fsdp_mesh = init_device_mesh("cuda", (self.world_size,))
with torch.device("meta"):
model = Transformer(model_args)
for module in model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module, mesh=fsdp_mesh)
fully_shard(model, mesh=fsdp_mesh)
for param in model.parameters():
self.assertEqual(param.device, torch.device("meta"))
# Construct a sharded state dict from the rank 0 full state dict by
# broadcasting and sharding
meta_sharded_sd = model.state_dict()
sharded_sd = {}
if self.rank == 0:
self.assertEqual(len(meta_sharded_sd), len(full_sd))
self.assertEqual(list(meta_sharded_sd.keys()), list(full_sd.keys()))
for (param_name, full_param), sharded_meta_param in zip(
full_sd.items(), meta_sharded_sd.values()
):
full_param = full_param.detach().cuda()
mesh = sharded_meta_param.device_mesh
dist.broadcast(full_param, src=0, group=mesh.get_group(0))
sharded_tensor = distribute_tensor(
full_param, mesh, sharded_meta_param.placements
)
sharded_sd[param_name] = nn.Parameter(sharded_tensor)
else:
for param_name, sharded_meta_param in meta_sharded_sd.items():
full_tensor = torch.empty(
sharded_meta_param.size(),
device="cuda",
dtype=sharded_meta_param.dtype,
)
mesh = sharded_meta_param.device_mesh
dist.broadcast(full_tensor, src=0, group=mesh.get_group(0))
sharded_tensor = distribute_tensor(
full_tensor, mesh, sharded_meta_param.placements
)
sharded_sd[param_name] = nn.Parameter(sharded_tensor)
model.load_state_dict(sharded_sd, assign=True)
for param in model.parameters():
self.assertIsInstance(param, DTensor)
self.assertEqual(param.device.type, "cuda")
# Construct the reference model on nonzero ranks by broadcasting the
# unsharded model from rank 0 and sharding on all ranks
if self.rank != 0:
ref_model = Transformer(model_args)
for param in ref_model.parameters():
torch.distributed.broadcast(param.detach(), src=0)
for module in ref_model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module, mesh=fsdp_mesh)
fully_shard(ref_model, mesh=fsdp_mesh)
for (param_name, param), (ref_param_name, ref_param) in zip(
model.named_parameters(), ref_model.named_parameters()
):
self.assertEqual(param_name, ref_param_name)
self.assertEqual(param, ref_param)
# Check one forward/backward for parity
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
loss = model(inp).sum()
loss.backward()
ref_loss = ref_model(inp).sum()
ref_loss.backward()
self.assertEqual(loss, ref_loss)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
self.assertEqual(param.grad, ref_param.grad)
class TestFullyShardProcessGroupInit(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_1d_process_group_init(self):
assert self.world_size == 4, f"{self.world_size}"
# For convenience, use device mesh's infra to construct the DP PG
# (in practice, the trainer would do it manually via `new_group()`)
dp_size = 2
global_mesh = init_device_mesh(
"cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
ref_dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
dp_pg = ref_dp_mesh.get_group(0)
# Check the `from_group()` API for correctness
dp_mesh = DeviceMesh.from_group(dp_pg, "cuda", mesh_dim_names=("dp",))
# Only compare the mesh tensors, not `DeviceMesh` objects themselves,
# since the ref has a parent mesh, while the `from_group` one does not
self.assertEqual(dp_mesh.mesh, ref_dp_mesh.mesh)
self.assertEqual(dp_mesh._coordinate_on_dim, ref_dp_mesh._coordinate_on_dim)
self.assertEqual(dp_mesh._dim_group_infos, ref_dp_mesh._dim_group_infos)
# Check 1D FSDP forward/backward parity over the DP mesh
# NOTE: We cannot use 2D DTensor-based training here because the DP
# mesh from `from_group` does not respect the parent mesh.
torch.manual_seed(42)
mlp_dim = 8
ref_model = MLP(mlp_dim)
for param in ref_model.parameters():
dist.broadcast(param.detach(), src=0)
model = copy.deepcopy(ref_model)
# Parallelize the test model with the ref DP mesh
for module in (ref_model.in_proj, ref_model.out_proj, ref_model):
fully_shard(module, mesh=ref_dp_mesh)
# Parallelize the test model with the new DP mesh from the PG
for module in (model.in_proj, model.out_proj, model):
fully_shard(module, mesh=dp_mesh)
# Ensure that TP ranks have the same input
inp = torch.randn((4, mlp_dim), device="cuda")
if self.rank in (0, 1):
dist.broadcast(inp, src=0, group=tp_mesh.get_group(0))
elif self.rank in (2, 3):
dist.broadcast(inp, src=2, group=tp_mesh.get_group(0))
ref_loss = ref_model(inp).sum()
ref_loss.backward()
loss = model(inp).sum()
loss.backward()
self.assertEqual(loss, ref_loss)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
# Cannot compare `DTensor`s directly since their meshes are not
# equal due to the ref parameter's mesh having a parent mesh while
# the other's mesh does not
self.assertEqual(param.to_local(), ref_param.to_local())
self.assertEqual(param.device_mesh.mesh, ref_param.device_mesh.mesh)
self.assertEqual(param.grad.to_local(), ref_param.grad.to_local())
self.assertEqual(
param.grad.device_mesh.mesh, ref_param.grad.device_mesh.mesh
)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_2d_process_group_init(self):
shard_mesh_dim_size = 2
assert (
self.world_size % shard_mesh_dim_size == 0
), f"Expects {self.world_size} to be divisible by {shard_mesh_dim_size}"
replicate_mesh_dim_size = self.world_size // shard_mesh_dim_size
mesh_dim_names = ("replicate", "shard")
ref_mesh = init_device_mesh(
"cuda",
(replicate_mesh_dim_size, shard_mesh_dim_size),
mesh_dim_names=mesh_dim_names,
)
# Use the global PG as the parent group (in practice, this could be a
# subgroup of the global PG)
dp_group = dist.distributed_c10d._get_default_group()
dp_shard_group = _init_intra_node_process_group(shard_mesh_dim_size)
dp_replicate_group = _init_inter_node_process_group(
dp_group, replicate_mesh_dim_size
)
mesh_tensor = torch.tensor(
dist.get_process_group_ranks(dp_group), dtype=torch.int
).view(replicate_mesh_dim_size, shard_mesh_dim_size)
# Check the `from_group()` API for correctness
mesh = DeviceMesh.from_group(
[dp_replicate_group, dp_shard_group],
"cuda",
mesh_dim_names=mesh_dim_names,
mesh=mesh_tensor,
)
self.assertEqual(mesh.mesh, ref_mesh.mesh)
self.assertEqual(mesh._coordinate_on_dim, ref_mesh._coordinate_on_dim)
for (tag, ranks, group_name), (ref_tag, ref_ranks, ref_group_name) in zip(
mesh._dim_group_infos, ref_mesh._dim_group_infos
):
# Since we manually constructed new subgroups, the test and ref
# groups are not the same
self.assertEqual(ranks, ref_ranks)
for mesh_dim_name in mesh_dim_names:
child_mesh = mesh[mesh_dim_name]
ref_child_mesh = ref_mesh[mesh_dim_name]
self.assertEqual(child_mesh, ref_child_mesh)
child_ranks = dist.distributed_c10d.get_process_group_ranks(
child_mesh.get_group()
)
ref_child_ranks = dist.distributed_c10d.get_process_group_ranks(
ref_child_mesh.get_group()
)
self.assertEqual(child_ranks, ref_child_ranks)
# Check HSDP forward/backward parity
torch.manual_seed(42)
mlp_dim = 8
ref_model = MLP(mlp_dim)
for param in ref_model.parameters():
dist.broadcast(param.detach(), src=0)
model = copy.deepcopy(ref_model)
# Parallelize the test model with the ref mesh
for module in (ref_model.in_proj, ref_model.out_proj, ref_model):
fully_shard(module, mesh=ref_mesh)
# Parallelize the test model with the new mesh from the PG
for module in (model.in_proj, model.out_proj, model):
fully_shard(module, mesh=mesh)
inp = torch.randn((4, mlp_dim), device="cuda")
ref_loss = ref_model(inp).sum()
ref_loss.backward()
loss = model(inp).sum()
loss.backward()
self.assertEqual(loss, ref_loss)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
self.assertEqual(param, ref_param)
self.assertEqual(param.grad, ref_param.grad)
class TestFullyShardHSDPBroadcast(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_hsdp_broadcast_across_replicas(self):
shard_size, replicate_size = 2, 2
mesh = init_device_mesh(
"cuda", (replicate_size, shard_size), mesh_dim_names=("replicate", "shard")
)
model_args = ModelArgs()
model = Transformer(model_args)
# Add a buffer to show that this flow works for buffers too
model.buf = torch.nn.Buffer(torch.randn((model_args.dim,)))
for module in model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module, mesh=mesh)
fully_shard(model, mesh=mesh)
# Only preserve the model states on the replicate mesh's rank 0
if mesh.get_local_rank("replicate") > 0:
for tensor in itertools.chain(model.parameters(), model.buffers()):
tensor.detach().fill_(1337)
# Check that replicas are different
for tensor in itertools.chain(model.parameters(), model.buffers()):
local_tensor = tensor.to_local() if isinstance(tensor, DTensor) else tensor
local_tensor_list = [
torch.empty_like(local_tensor) for _ in range(mesh["replicate"].size())
]
dist.all_gather(
local_tensor_list, local_tensor, group=mesh.get_group("replicate")
)
for other_local_tensor in local_tensor_list[1:]:
self.assertEqual(other_local_tensor.shape, local_tensor_list[0].shape)
self.assertNotEqual(other_local_tensor, local_tensor_list[0])
# Broadcast from replicate mesh's rank 0
replicate_group = mesh.get_group("replicate")
for tensor in itertools.chain(model.parameters(), model.buffers()):
# E.g. for mesh [[0, 1, 2, 3], [4, 5, 6, 7]] sharding on dim-1 and
# replicating on dim-0, broadcast with sources 0, 1, 2, 3
src_rank = dist.get_process_group_ranks(replicate_group)[0]
torch.distributed.broadcast(
tensor.to_local() if isinstance(tensor, DTensor) else tensor,
src=src_rank,
group=replicate_group,
)
# Check that replicas are the same
for tensor in itertools.chain(model.parameters(), model.buffers()):
local_tensor = tensor.to_local() if isinstance(tensor, DTensor) else tensor
local_tensor_list = [
torch.empty_like(local_tensor) for _ in range(mesh["replicate"].size())
]
dist.all_gather(
local_tensor_list, local_tensor, group=mesh.get_group("replicate")
)
for other_local_tensor in local_tensor_list[1:]:
self.assertEqual(other_local_tensor, local_tensor_list[0])
# Check that we can run an iteration without erroring
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
model(inp).sum().backward()
class TestFullyShardShardPlacementFn(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 8
def _init_models(self):
torch.manual_seed(42)
model_args = ModelArgs(n_layers=3, dropout_p=0.0)
model = Transformer(model_args)
for param in model.parameters():
dist.broadcast(param.detach(), src=0)
ref_model = copy.deepcopy(model)
return model, ref_model
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_init_1d_transformer_shard_largest_dim(self):
model, ref_model = self._init_models()
def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
largest_dim = largest_dim_size = -1
for dim, dim_size in enumerate(param.shape):
if dim_size > largest_dim_size:
largest_dim = dim
largest_dim_size = dim_size
assert largest_dim >= 0, f"{param.shape}"
return Shard(largest_dim)
for layer in model.layers:
fully_shard(layer, shard_placement_fn=shard_placement_fn)
fully_shard(model, shard_placement_fn=shard_placement_fn)
any_shard_dim1 = False
for param in model.parameters():
self.assertEqual(len(param.placements), 1)
self.assertIsInstance(param.placements[0], Shard)
any_shard_dim1 |= param.placements[0].dim == 1
self.assertTrue(any_shard_dim1)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
full_param = param.full_tensor()
self.assertEqual(full_param, ref_param)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_init_1d_transformer_shard_dim_neg1(self):
model, ref_model = self._init_models()
def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
# Check that FSDP will normalize this dim to non-negative
return Shard(-1)
for layer in model.layers:
fully_shard(layer, shard_placement_fn=shard_placement_fn)
fully_shard(model, shard_placement_fn=shard_placement_fn)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
full_param = param.full_tensor()
self.assertEqual(full_param, ref_param)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_init_2d_transformer_shard_diff_dim(self):
model, ref_model = self._init_models()
dp_size, tp_size = self.world_size // 2, 2
global_mesh = init_device_mesh(
"cuda", (dp_size, tp_size), mesh_dim_names=("dp", "tp")
)
model = Transformer.parallelize(model, global_mesh["tp"], use_seq_parallel=True)
def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
if isinstance(param, DTensor):
for placement in param.placements:
if isinstance(placement, Shard):
shard_dim = param.ndim - 1 - placement.dim
assert shard_dim >= 0, f"{param.shape}"
return Shard(shard_dim)
return Shard(0)
for layer in model.layers:
fully_shard(
layer, mesh=global_mesh["dp"], shard_placement_fn=shard_placement_fn
)
fully_shard(
model, mesh=global_mesh["dp"], shard_placement_fn=shard_placement_fn
)
linear_weight_names = ["wq", "wk", "wv", "wo", "w1", "w2"]
for param_name, param in model.named_parameters():
if (
any(n in param_name for n in linear_weight_names)
and "weight" in param_name
):
total_placement_dims = 0
for placement in param.placements:
self.assertTrue(isinstance(placement, Shard))
total_placement_dims += placement.dim
self.assertEqual(param.ndim, 2)
# Check that FSDP shards on either dim-0 or dim-1, and TP
# shards on the other
self.assertEqual(total_placement_dims, 1)
else:
self.assertTrue(
any(isinstance(placement, Shard) for placement in param.placements)
)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
full_param = param.full_tensor()
self.assertEqual(full_param, ref_param)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_init_1d_uneven_shard_largest_dim(self):
torch.manual_seed(42)
model = nn.Sequential(nn.Linear(16, 17), nn.Linear(17, 8))
def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
largest_dim = -1
largest_dim_size = -1
for dim, dim_size in enumerate(param.shape):
if dim_size > largest_dim_size:
largest_dim = dim
largest_dim_size = dim_size
assert largest_dim >= 0, f"{param.shape}"
assert largest_dim < param.ndim, f"{largest_dim=} {param.shape}"
return Shard(largest_dim)
with self.assertRaisesRegex(
NotImplementedError, "FSDP does not support uneven sharding on dim 1"
):
fully_shard(model, shard_placement_fn=shard_placement_fn)
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_invalid_shard_dim(self):
model = nn.Sequential(nn.Linear(16, 16), nn.Linear(16, 8))
def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
return Shard(1)
# Shard(1) is invalid for 1D bias parameters
with self.assertRaisesRegex(
AssertionError, "Shard dim 1 is invalid for 1D tensor"
):
fully_shard(model, shard_placement_fn=shard_placement_fn)
# TODO: Remove this test class once we remove the old import path:
# torch/distributed/_composable/fsdp
class TestFullyShardOldImport(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 2
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_old_import_training(self):
from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed._composable.fsdp.fully_shard import FSDPModule
model = nn.Sequential(nn.Linear(16, 16), nn.Linear(16, 16))
mp_policy = MixedPrecisionPolicy(param_dtype=torch.bfloat16)
fully_shard(model[0], mp_policy=mp_policy)
fully_shard(model[1], mp_policy=mp_policy)
fully_shard(model, mp_policy=mp_policy)
self.assertIsInstance(model[0], FSDPModule)
self.assertIsInstance(model[1], FSDPModule)
self.assertIsInstance(model, FSDPModule)
inp = torch.randn((8, 16), device="cuda")
model(inp).sum().backward()
if __name__ == "__main__":
run_tests()
|