1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
# Owner(s): ["oncall: distributed"]
import copy
import functools
from typing import Callable
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._tensor.experimental import implicit_replication
from torch.distributed.fsdp import fully_shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
FSDPTest,
patch_all_gather,
patch_reduce_scatter,
)
from torch.testing._internal.common_utils import get_cycles_per_ms, run_tests
class TestFullyShardOverlap(FSDPTest):
"""
NOTE: Testing stream overlap in PyTorch CI is tricky.
One approach is to use CUDA sleeps to emulate kernels in each stream;
however, ``torch.cuda._sleep`` requires inputs in units of cycles. The
``get_cycles_per_ms`` function to convert from ms to cycles is computed
once and cached thereafter, which means that if there is variation later,
the cached value may not be accurate. This leads to flakiness in CI.
To address this, we relax the tests as simple sanity checks that the
overlapped times are less than a non-overlapped baseline, but we do not
test that the overlapped time is less than a precisely calculated time.
"""
@property
def world_size(self) -> int:
return min(2, torch.cuda.device_count())
@skip_if_lt_x_gpu(2)
def test_fully_shard_training_overlap(self):
torch.manual_seed(42)
# Use non-trivial comm. time but still shorter than compute time
dim, num_linears, compute_sleep_ms, comm_sleep_ms = (4, 3, 25, 10)
model = nn.Sequential(
*[LinearWithSleep(dim, compute_sleep_ms) for _ in range(num_linears)]
)
ref_model = copy.deepcopy(model).cuda()
for lin in model:
assert len(list(lin.parameters())) == 1, "Expects only one weight"
fully_shard(lin, reshard_after_forward=True)
fully_shard(model, reshard_after_forward=True)
orig_all_gather_into_tensor = dist.all_gather_into_tensor
orig_reduce_scatter_tensor = dist.reduce_scatter_tensor
comm_stream = torch.cuda.Stream()
def delay_collective():
# Share a stream so that all-gather and reduce-scatter block each
# other like in `ProcessGroupNCCL`
comm_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(comm_stream):
torch.cuda._sleep(int(comm_sleep_ms * get_cycles_per_ms()))
torch.cuda.current_stream().wait_stream(comm_stream)
def delayed_all_gather(*args, **kwargs):
delay_collective()
return orig_all_gather_into_tensor(*args, **kwargs)
def delayed_reduce_scatter(*args, **kwargs):
delay_collective()
return orig_reduce_scatter_tensor(*args, **kwargs)
inp = torch.randn((2, dim), device="cuda")
loss = model(inp).sum() # warmup CUDA and allocator
loss.backward()
def ref_fwd():
with patch_all_gather(delayed_all_gather):
# Run dummy all-gathers per weight (which is one FSDP group)
for lin in ref_model:
dummy_ag_output = torch.empty_like(lin.weight)
dummy_ag_input = torch.chunk(dummy_ag_output, self.world_size)[
self.rank
]
dist.all_gather_into_tensor(dummy_ag_output, dummy_ag_input)
return ref_model(inp)
def fwd():
with patch_all_gather(delayed_all_gather):
model(inp)
ref_fwd_time = self._time_fn(ref_fwd)
fwd_time = self._time_fn(fwd)
# Forward: only 1st all-gather is exposed
# NOTE: Do not enforce the expected forward time due to flakiness in CI
# expected_fwd_time = comm_sleep_ms + num_linears * compute_sleep_ms + buffer_ms
self.assertLessEqual(fwd_time, ref_fwd_time)
def ref_fwd_bwd():
with patch_all_gather(delayed_all_gather):
# Run dummy all-gathers per weight (which is one FSDP group)
for lin in ref_model:
dummy_ag_output = torch.empty_like(lin.weight)
dummy_ag_input = torch.chunk(dummy_ag_output, self.world_size)[
self.rank
]
dist.all_gather_into_tensor(dummy_ag_output, dummy_ag_input)
loss = ref_model(inp).sum()
# Run dummy all-gathers per weight again since we are
# resharding after forward
for lin in ref_model:
dummy_ag_output = torch.empty_like(lin.weight)
dummy_ag_input = torch.chunk(dummy_ag_output, self.world_size)[
self.rank
]
dist.all_gather_into_tensor(dummy_ag_output, dummy_ag_input)
loss.backward()
# Run dummy reduce-scatters per weight
for lin in ref_model:
dummy_rs_input = torch.empty_like(lin.weight)
dummy_rs_output = torch.chunk(dummy_rs_input, self.world_size)[
self.rank
]
dist.reduce_scatter_tensor(dummy_rs_output, dummy_rs_input)
def fwd_bwd():
with patch_all_gather(delayed_all_gather), patch_reduce_scatter(
delayed_reduce_scatter
):
loss = model(inp).sum()
loss.backward()
ref_fwd_bwd_time = self._time_fn(ref_fwd_bwd)
fwd_bwd_time = self._time_fn(fwd_bwd)
# Backward: only 1st all-gather and last reduce-scatter are exposed;
# double the backward compute since computing two gradients per layer
# NOTE: Do not enforce the expected forward-backward time due to
# flakiness in CI
# expected_bwd_time = (
# comm_sleep_ms * 2 + num_linears * 2 * compute_sleep_ms + buffer_ms * 2
# )
self.assertLessEqual(fwd_bwd_time, ref_fwd_bwd_time)
@skip_if_lt_x_gpu(2)
def test_fully_shard_post_optim_event_overlap(self):
torch.manual_seed(42)
# Use non-trivial comm. time but still shorter than compute time
dim, compute_sleep_ms, comm_sleep_ms = (4, 25, 10)
# Define the model to have a high-compute linear followed by a
# low-compute linear, where only the low-compute linear uses FSDP
model = nn.Sequential(
LinearWithSleep(dim, compute_sleep_ms), nn.Linear(dim, dim)
).cuda()
fully_shard(model[1], reshard_after_forward=False)
optim = torch.optim.AdamW(model.parameters(), lr=1e-2)
orig_all_gather_into_tensor = dist.all_gather_into_tensor
def delayed_all_gather(*args, **kwargs):
torch.cuda._sleep(int(comm_sleep_ms * get_cycles_per_ms()))
return orig_all_gather_into_tensor(*args, **kwargs)
inp = torch.randn((2, dim), device="cuda")
def run_train_steps(num_iters: int, use_post_optim_event: bool):
for _ in range(num_iters):
optim.zero_grad()
with patch_all_gather(delayed_all_gather):
loss = model(inp).sum()
loss.backward()
with implicit_replication():
optim.step()
if use_post_optim_event:
post_optim_event = torch.cuda.current_stream().record_event()
model[1].set_post_optim_event(post_optim_event)
run_train_steps(1, False) # warmup CUDA and allocator
num_iters = 5
baseline_time = self._time_fn(
functools.partial(run_train_steps, num_iters, False)
)
test_time = self._time_fn(functools.partial(run_train_steps, num_iters, True))
buffer_ms = 4 # CPU delays and copies
# Baseline: FSDP all-gather is exposed since the FSDP module waits for
# the current stream and hence the high-compute linear
self.assertLessEqual(
baseline_time,
num_iters * (3 * compute_sleep_ms + comm_sleep_ms + buffer_ms),
)
# Test: FSDP all-gather is overlapped with the high-compute linear
# since the FSDP module only waits for the post-optim event (except on
# the 1st iteration when no event has been recorded)
expected_test_time = (
num_iters * (3 * compute_sleep_ms + buffer_ms) + comm_sleep_ms
)
self.assertLessEqual(test_time, expected_test_time)
# Since `get_cycles_per_ms` uses lru cache, there may be some variance
# between the initially determined cycles vs. the current cycles per
# ms, so we relax the baseline check to just that it is greater than
# the test time rather than the expected test time
self.assertGreater(baseline_time, test_time)
def _time_fn(self, fn: Callable):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
dist.barrier()
torch.cuda.synchronize()
start_event.record()
fn()
end_event.record()
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
return elapsed_time
class Matmul(torch.autograd.Function):
# Use CUDA sleeps to emulate compute time
@staticmethod
def forward(ctx, input: torch.Tensor, weight: torch.Tensor, sleep_ms: int):
ctx.save_for_backward(input, weight)
ctx.sleep_ms = sleep_ms
torch.cuda._sleep(int(sleep_ms * get_cycles_per_ms()))
return input @ weight
@staticmethod
def backward(ctx, grad_output: torch.Tensor):
(input, weight) = ctx.saved_tensors
torch.cuda._sleep(int(2 * ctx.sleep_ms * get_cycles_per_ms()))
grad_input = grad_output @ weight.T
grad_weight = input.T @ grad_output
return grad_input, grad_weight, None
class LinearWithSleep(nn.Module):
def __init__(self, dim: int, sleep_ms: int):
super().__init__()
self.weight = nn.Parameter(torch.randn((dim, dim)))
self.sleep_ms = sleep_ms
def forward(self, x: torch.Tensor) -> torch.Tensor:
return nn.functional.relu(Matmul.apply(x, self.weight, self.sleep_ms))
if __name__ == "__main__":
run_tests()
|