1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
|
# Owner(s): ["oncall: distributed"]
import contextlib
import copy
import functools
import itertools
import unittest
from collections import defaultdict
from typing import Any, Iterable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import checkpoint, replicate
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_PREFIX,
apply_activation_checkpointing,
)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import (
CPUOffloadPolicy,
FSDPModule,
fully_shard,
OffloadPolicy,
register_fsdp_forward_method,
)
from torch.distributed.tensor import DTensor, init_device_mesh, Shard
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
check_sharded_parity,
FSDPTest,
FSDPTestMultiThread,
MLP,
MLPStack,
patch_all_gather,
patch_reduce_scatter,
test_compiled_fsdp,
)
from torch.testing._internal.common_utils import (
get_cycles_per_ms,
run_tests,
wrapSwapTensorsTest,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
TransformerBlock,
)
c10d_ops = torch.ops.c10d
funcol = torch.ops.c10d_functional
class TestFullyShardForwardInputs(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 2
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_root_move_forward_input_to_device(self):
device = torch.device("cuda", 0)
class ParamlessModule(nn.Module):
def forward(self, x: torch.Tensor, ys: Tuple[torch.Tensor, ...]):
# Check that FSDP moved the inputs to GPU, including recursing
# into the tuple data structure
assert x.device == device, f"Expects {device} but got {x.device}"
assert (
ys[0].device == device
), f"Expects {device} but got {ys[0].device}"
assert (
ys[1].device == device
), f"Expects {device} but got {ys[1].device}"
y = ys[0] + ys[1]
return x + y + 1
model = ParamlessModule()
fully_shard(model)
x = torch.randn((3,))
ys = (torch.randn((3,)), torch.randn((3,)))
self.assertEqual(x.device, torch.device("cpu"))
self.assertEqual(ys[0].device, torch.device("cpu"))
self.assertEqual(ys[1].device, torch.device("cpu"))
model(x, ys)
class TestFullyShardRegisteredParams(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_param_registration_after_forward(self):
"""Tests the parameter registration after forward."""
device = torch.device("cuda", 0)
# Single FSDP group
for reshard_after_forward in (True, False, 2):
torch.manual_seed(42)
model = MLP(3, device)
# Since seed is per process, not per thread, we broadcast to ensure
# the same parameters across ranks
for param in model.parameters():
dist.broadcast(param, src=0)
ref_model = copy.deepcopy(model)
fully_shard(model, reshard_after_forward=reshard_after_forward) # root only
inp = torch.randn((2, 3), device="cuda")
self._assert_dtensor_params(model.parameters())
self._assert_same_params(model.parameters(), ref_model.parameters())
model(inp) # root does not reshard after forward
self._assert_tensor_params(model.parameters())
self._assert_same_params(model.parameters(), ref_model.parameters())
model.reshard() # however, we can manually reshard
self._assert_dtensor_params(model.parameters())
self._assert_same_params(model.parameters(), ref_model.parameters())
# Multiple FSDP groups
for reshard_after_forward in (True, False, 2):
torch.manual_seed(42)
model = nn.Sequential(MLP(3, device), MLP(3, device))
for param in model.parameters():
dist.broadcast(param, src=0)
ref_model = copy.deepcopy(model)
fully_shard(model[0].in_proj, reshard_after_forward=reshard_after_forward)
fully_shard(model[0].out_proj, reshard_after_forward=reshard_after_forward)
fully_shard(model, reshard_after_forward=reshard_after_forward)
self._assert_dtensor_params(model.parameters())
self._assert_same_params(model.parameters(), ref_model.parameters())
model(inp)
non_root_params = list(model[0].in_proj.parameters()) + list(
model[0].out_proj.parameters()
)
root_params = list(set(model.parameters()) - set(non_root_params))
if reshard_after_forward is False:
self._assert_tensor_params(non_root_params)
else:
self._assert_dtensor_params(non_root_params)
self._assert_tensor_params(root_params)
self._assert_same_params(model.parameters(), ref_model.parameters())
for module in model.modules():
if isinstance(module, FSDPModule):
module.reshard() # however, we can manually reshard
self._assert_dtensor_params(model.parameters())
self._assert_same_params(model.parameters(), ref_model.parameters())
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_param_registration_after_backward(self):
"""Tests the parameter registration after backward."""
device = torch.device("cuda", 0)
# Single FSDP group
for reshard_after_forward in (True, False, 2):
model = MLP(8, device)
fully_shard(model, reshard_after_forward=reshard_after_forward) # root only
inp = torch.randn((2, 8), device="cuda")
self._assert_dtensor_params(model.parameters())
model(inp).sum().backward()
self._assert_dtensor_params(model.parameters())
# Multiple FSDP groups
for reshard_after_forward in (True, False, 2):
model = MLP(8, device)
fully_shard(model.in_proj, reshard_after_forward=reshard_after_forward)
fully_shard(model.out_proj, reshard_after_forward=reshard_after_forward)
fully_shard(model, reshard_after_forward=reshard_after_forward)
self._assert_dtensor_params(model.parameters())
model(inp).sum().backward()
self._assert_dtensor_params(model.parameters())
def _assert_tensor_params(self, params: Iterable[nn.Parameter]):
self.assertGreater(len(list(params)), 0)
for param in params:
self.assertNotIsInstance(param, DTensor)
self.assertIsInstance(param, torch.Tensor)
def _assert_dtensor_params(self, params: Iterable[nn.Parameter]):
self.assertGreater(len(list(params)), 0)
for param in params:
self.assertIsInstance(param, DTensor)
def _assert_same_params(
self, params: Iterable[nn.Parameter], ref_params: Iterable[nn.Parameter]
):
params, ref_params = list(params), list(ref_params)
self.assertEqual(len(params), len(ref_params))
for param, ref_param in zip(params, ref_params):
if isinstance(param, DTensor):
param = param.full_tensor()
self.assertEqual(param.shape, ref_param.shape)
self.assertEqual(param, ref_param)
class TestFullyShardCastAfterInit(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 2
@unittest.skipIf(not TEST_CUDA, "no cuda")
@wrapSwapTensorsTest(True)
def test_to_float64_after_init(self):
"""Tests that the user can cast the module to float64 after init."""
# NOTE: Test fp64 instead of a lower precision dtype like bf16 for
# better numerics. The important part is changing the dtype.
torch.manual_seed(42)
mlp_dim, device, dtype = 4, torch.device("cuda"), torch.float64
model = MLP(mlp_dim, device=device)
for param in model.parameters():
dist.broadcast(param, src=0)
ref_model = copy.deepcopy(model).to(dtype)
replicate(ref_model)
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
for module in (model.in_proj, model.out_proj, model):
fully_shard(module)
model.to(dtype)
for param in model.parameters():
self.assertEqual(param.dtype, dtype)
self.assertEqual(param.to_local().dtype, dtype)
self.assertEqual(param._spec.tensor_meta.dtype, dtype)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
check_sharded_parity(self, ref_model, model)
torch.manual_seed(42 + self.rank + 1)
inp = torch.randn((2, mlp_dim), device="cuda", dtype=dtype)
for iter_idx in range(10):
losses: List[torch.Tensor] = []
for _model in (ref_model, model):
losses.append(_model(inp).sum())
losses[-1].backward()
self.assertEqual(losses[0], losses[1])
check_sharded_parity(self, ref_model, model)
for param in model.parameters():
self.assertEqual(param.dtype, dtype)
self.assertEqual(param.to_local().dtype, dtype)
self.assertEqual(param._spec.tensor_meta.dtype, dtype)
self.assertEqual(param.grad.dtype, dtype)
self.assertEqual(param.grad.to_local().dtype, dtype)
self.assertEqual(param.grad._spec.tensor_meta.dtype, dtype)
for _optim in (ref_optim, optim):
_optim.step()
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
class TestFullyShard1DTrainingCore(FSDPTest):
@property
def world_size(self) -> int:
return min(8, torch.cuda.device_count())
@skip_if_lt_x_gpu(2)
def test_train_parity_single_group_shard_dim0(self):
"""
Tests train parity with DDP for a single FSDP group when sharding
parameters on dim-0.
"""
self.run_subtests(
{
"lin_shapes": [
[(16, 15), (15, 8)],
[(7, 15), (15, 3)],
[(16, 17), (17, 8)],
],
"use_shard_placement_fn": [False],
},
self._test_train_parity_single_group,
)
@skip_if_lt_x_gpu(2)
def test_train_parity_single_group_shard_largest_dim(self):
"""
Tests train parity with DDP for a single FSDP group when sharding
parameters on their largest dim.
"""
self.run_subtests(
{
# Sharding on nonzero dim requires even sharding
"lin_shapes": [[(32, 16), (16, 8)]],
"use_shard_placement_fn": [True],
},
self._test_train_parity_single_group,
)
def _test_train_parity_single_group(
self, lin_shapes: List[Tuple[int, int]], use_shard_placement_fn: bool
):
torch.manual_seed(42)
model = nn.Sequential(
nn.Linear(*lin_shapes[0]), nn.ReLU(), nn.Linear(*lin_shapes[1])
)
ref_model = copy.deepcopy(model).cuda()
replicate(ref_model, device_ids=[self.rank])
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
def _shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
largest_dim = -1
largest_dim_size = -1
for dim, dim_size in enumerate(param.shape):
if dim_size > largest_dim_size:
largest_dim = dim
largest_dim_size = dim_size
assert largest_dim >= 0, f"{param.shape}"
assert largest_dim < param.ndim, f"{largest_dim=} {param.shape}"
return Shard(largest_dim)
shard_placement_fn = _shard_placement_fn if use_shard_placement_fn else None
fully_shard(model, shard_placement_fn=shard_placement_fn)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.manual_seed(42 + self.rank + 1)
inp = (torch.randn((4, lin_shapes[0][0]), device="cuda"),)
for iter_idx in range(10):
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(*inp).sum())
losses[-1].backward()
_optim.step()
self.assertEqual(losses[0], losses[1])
@skip_if_lt_x_gpu(2)
@test_compiled_fsdp(compile_compute_on_module=Transformer)
def test_train_parity_multi_group(self):
"""
Tests train parity against DDP when using multiple parameter groups for
communication (for communication and computation overlap plus memory
reduction).
"""
self.run_subtests(
{
"reshard_after_forward": [True, False, 2],
"device_type": ["cuda"],
"offload_policy": [OffloadPolicy()],
"delay_after_forward": [False, True],
"delay_before_all_gather": [False, True],
"delay_before_reduce_scatter": [False, True],
"delay_before_optim": [False, True],
"unshard_async_op": [False],
},
self._test_train_parity_multi_group,
)
@skip_if_lt_x_gpu(2)
def test_train_parity_multi_group_cpu_offload_eager(self):
"""
Tests train parity against DDP when using multiple parameter groups for
communication and CPU offloading.
"""
self.run_subtests(
{
"reshard_after_forward": [True], # save CI time
"offload_policy": [
CPUOffloadPolicy(pin_memory=True),
CPUOffloadPolicy(pin_memory=False),
],
"device_type": ["cuda"],
"delay_after_forward": [False, True],
"delay_before_all_gather": [False, True],
"delay_before_reduce_scatter": [False, True],
"delay_before_optim": [False, True],
"unshard_async_op": [False],
},
self._test_train_parity_multi_group,
)
@skip_if_lt_x_gpu(2)
@test_compiled_fsdp(compile_compute_on_module=Transformer)
def test_train_parity_multi_group_unshard_async_op(self):
"""
Tests train parity against DDP when using multiple parameter groups for
communication and setting ``unshard_async_op=True``.
"""
self.run_subtests(
{
"reshard_after_forward": [True],
"device_type": ["cuda"],
"offload_policy": [OffloadPolicy()],
"delay_after_forward": [False, True],
"delay_before_all_gather": [False, True],
"delay_before_reduce_scatter": [False, True],
"delay_before_optim": [False, True],
"unshard_async_op": [True],
},
self._test_train_parity_multi_group,
)
def _test_train_parity_multi_group(
self,
reshard_after_forward: Union[bool, int],
offload_policy: OffloadPolicy,
device_type: str,
delay_after_forward: bool,
delay_before_all_gather: bool,
delay_before_reduce_scatter: bool,
delay_before_optim: bool,
unshard_async_op: bool,
):
# Only test individual delays or all four delays to save test time
if (
delay_after_forward
+ delay_before_all_gather
+ delay_before_reduce_scatter
+ delay_before_optim
in (2, 3)
):
return
assert device_type in ("cuda", "cpu"), f"{device_type}"
torch.manual_seed(42)
vocab_size = 1024
model_args = ModelArgs(
n_layers=3,
n_heads=4,
vocab_size=vocab_size,
max_seq_len=64,
dropout_p=0,
)
model = Transformer(model_args)
ref_model = copy.deepcopy(model)
if device_type == "cuda":
replicate(ref_model.cuda(), device_ids=[self.rank])
else:
gloo_pg = dist.new_group(backend="gloo")
replicate(ref_model, process_group=gloo_pg)
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
mesh = init_device_mesh(device_type, (self.world_size,))
fully_shard_fn = functools.partial(
fully_shard,
mesh=mesh,
reshard_after_forward=reshard_after_forward,
offload_policy=offload_policy,
)
for module in model.modules():
if isinstance(module, TransformerBlock):
fully_shard_fn(module)
fully_shard_fn(model)
if unshard_async_op:
model._set_unshard_async_op(unshard_async_op)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
delay_in_ms = 100
orig_all_gather = dist.all_gather_into_tensor
orig_reduce_scatter = dist.reduce_scatter_tensor
def delayed_all_gather(*args, **kwargs):
torch.cuda._sleep(int(delay_in_ms * get_cycles_per_ms()))
return orig_all_gather(*args, **kwargs)
def delayed_reduce_scatter(*args, **kwargs):
torch.cuda._sleep(int(delay_in_ms * get_cycles_per_ms()))
return orig_reduce_scatter(*args, **kwargs)
torch.manual_seed(42 + self.rank + 1)
patch_all_gather_ctx = (
patch_all_gather(delayed_all_gather)
if delay_before_all_gather
else contextlib.nullcontext()
)
patch_reduce_scatter_ctx = (
patch_reduce_scatter(delayed_reduce_scatter)
if delay_before_reduce_scatter
else contextlib.nullcontext()
)
with patch_all_gather_ctx, patch_reduce_scatter_ctx:
for iter_idx in range(10):
inp = torch.randint(0, vocab_size, (3, 64), device=device_type)
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
if _model is model and delay_after_forward:
torch.cuda._sleep(int(delay_in_ms * get_cycles_per_ms()))
losses[-1].backward()
if _model is model and delay_before_optim:
torch.cuda._sleep(int(delay_in_ms * get_cycles_per_ms()))
_optim.step()
self.assertEqual(losses[0], losses[1])
@skip_if_lt_x_gpu(2)
def test_non_root_forward_backward(self):
"""
Tests running forward/backward through the root and then through a
non-root. The non-root needs to synchronize streams/queue the callback.
"""
torch.manual_seed(42)
lin_dim = 32
model = nn.Sequential(*[MLP(lin_dim, torch.device("cpu")) for _ in range(3)])
ref_model = copy.deepcopy(model).cuda()
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
for mlp in model:
fully_shard(mlp)
fully_shard(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
torch.manual_seed(42 + self.rank)
inp = torch.randn((8, lin_dim), device=torch.device("cuda"))
ref_root_loss = ref_model(inp).sum()
ref_root_loss.backward()
for param in ref_model.parameters():
dist.all_reduce(param.grad)
param.grad.detach().div_(self.world_size)
ref_optim.step()
ref_optim.zero_grad()
ref_nonroot_loss = ref_model[0](inp).sum()
ref_nonroot_loss.backward()
for param in ref_model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad)
param.grad.detach().div_(self.world_size)
ref_optim.step()
root_loss = model(inp).sum()
root_loss.backward()
torch.cuda._sleep(int(100 * get_cycles_per_ms()))
optim.step()
optim.zero_grad()
nonroot_loss = model[0](inp).sum()
nonroot_loss.backward()
optim.step()
self.assertEqual(ref_root_loss, root_loss)
self.assertEqual(ref_nonroot_loss, nonroot_loss)
self.assertEqual(ref_model(inp).sum(), model(inp).sum())
@skip_if_lt_x_gpu(2)
def test_multi_forward_module(self):
"""
Tests parity with DDP when running a module that participates multiple
times in forward.
"""
self.run_subtests(
{"reshard_after_forward": [True, False, 2]},
self._test_multi_forward_module,
)
def _test_multi_forward_module(self, reshard_after_forward: Union[bool, int]):
class MultiForwardModule(nn.Module):
def __init__(self, device: torch.device):
super().__init__()
self.inner = nn.Linear(4, 4, device=device)
self.outer = nn.Linear(4, 5, device=device)
def forward(self, x):
i = self.inner(x)
j = self.inner(x)
return self.outer(i + j)
torch.manual_seed(42)
model = MultiForwardModule(device="cuda")
ref_model = copy.deepcopy(model)
replicate(ref_model, device_ids=[self.rank])
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
fully_shard(model.inner)
fully_shard(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.manual_seed(42 + self.rank)
inp = torch.randn((32, 4), device="cuda")
for iter_idx in range(10):
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
self.assertEqual(losses[0], losses[1])
@skip_if_lt_x_gpu(2)
def test_explicit_prefetching(self):
torch.manual_seed(42)
model_args = ModelArgs(n_layers=8, dropout_p=0.0)
model = Transformer(model_args)
ref_model = replicate(copy.deepcopy(model).cuda())
ref_optim = torch.optim.AdamW(ref_model.parameters(), lr=1e-2)
for layer in itertools.chain(model.layers, [model]):
fully_shard(layer)
optim = torch.optim.AdamW(model.parameters(), lr=1e-2)
num_to_forward_prefetch = num_to_backward_prefetch = 2
for i, layer in enumerate(model.layers):
if i >= len(model.layers) - num_to_forward_prefetch:
break
layers_to_prefetch = [
model.layers[i + j] for j in range(1, num_to_forward_prefetch + 1)
]
layer.set_modules_to_forward_prefetch(layers_to_prefetch)
for i, layer in enumerate(model.layers):
if i < num_to_backward_prefetch:
continue
layers_to_prefetch = [
model.layers[i - j] for j in range(1, num_to_backward_prefetch + 1)
]
layer.set_modules_to_backward_prefetch(layers_to_prefetch)
torch.manual_seed(42 + self.rank)
inp = torch.randint(0, model_args.vocab_size, (2, 8), device="cuda")
for iter_idx in range(10):
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad()
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
self.assertEqual(losses[0], losses[1])
@skip_if_lt_x_gpu(2)
def test_post_optim_event(self):
torch.manual_seed(42)
model_args = ModelArgs(dropout_p=0.0)
model = Transformer(model_args)
ref_model = replicate(copy.deepcopy(model).cuda())
ref_optim = torch.optim.AdamW(ref_model.parameters(), lr=1e-2)
for layer in itertools.chain(model.layers, [model]):
fully_shard(layer)
optim = torch.optim.AdamW(model.parameters(), lr=1e-2)
def step_post_hook(
fsdp_module: FSDPModule, opt: torch.optim.Optimizer, args, kwargs
) -> None:
post_optim_event = torch.cuda.current_stream().record_event()
fsdp_module.set_post_optim_event(post_optim_event)
optim.register_step_post_hook(functools.partial(step_post_hook, model))
torch.manual_seed(42 + self.rank)
inp = torch.randint(0, model_args.vocab_size, (2, 8), device="cuda")
# Track all losses and check for equality at the end to avoid a CPU
# sync point after each iteration
ref_losses: List[torch.Tensor] = []
losses: List[torch.Tensor] = []
for iter_idx in range(10):
ref_optim.zero_grad()
ref_losses.append(ref_model(inp).sum())
ref_losses[-1].backward()
ref_optim.step()
for iter_idx in range(10):
optim.zero_grad()
losses.append(model(inp).sum())
losses[-1].backward()
optim.step()
# Sleep after the optimizer step to allow CPU to run ahead into the
# next iteration's forward, exercising the post-optim stream sync
torch.cuda._sleep(int(25 * get_cycles_per_ms()))
for ref_loss, loss in zip(ref_losses, losses):
self.assertEqual(ref_loss, loss)
class TestFullyShard1DTrainingCompose(FSDPTest):
@property
def world_size(self) -> int:
# Since these tests run with a larger transformer model, they may see
# some numeric drift with >2 GPUs
return min(torch.cuda.device_count(), 2)
@skip_if_lt_x_gpu(2)
@test_compiled_fsdp(compile_compute_on_module=Transformer)
def test_train_parity_with_activation_checkpointing(self):
"""
Tests train parity against DDP when composing with activation
checkpointing.
"""
self.run_subtests(
{
"reshard_after_forward": [True, False],
"checkpoint_impl": ["composable", "utils", "wrapper"],
"module_grouping": ["block", "mem_eff", "mem_eff_weight_tied"],
},
self._test_train_parity_with_activation_checkpointing,
)
def _test_train_parity_with_activation_checkpointing(
self,
reshard_after_forward: Union[bool, int],
checkpoint_impl: str,
module_grouping: str,
):
assert checkpoint_impl in ("composable", "utils", "wrapper")
testing_compile = fully_shard != torch.distributed.fsdp.fully_shard
if testing_compile and checkpoint_impl == "composable":
return
torch.manual_seed(42)
vocab_size = 1024
with torch.device(torch.device("cuda")):
model_args = ModelArgs(
n_layers=3,
n_heads=4,
vocab_size=vocab_size,
max_seq_len=64,
dropout_p=0,
checkpoint_activations=(checkpoint_impl == "utils"),
# For the mem-efficient module grouping, we separate the
# embeddings from the output projection, which does not support
# weight tying
weight_tying=module_grouping != "mem_eff",
)
model = Transformer(model_args)
ref_model = replicate(copy.deepcopy(model), device_ids=[self.rank])
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
# Apply activation checkpointing
prefixes_to_ignore = ()
if checkpoint_impl == "wrapper":
prefixes_to_ignore = (_CHECKPOINT_PREFIX,)
apply_activation_checkpointing(
model, check_fn=lambda m: isinstance(m, TransformerBlock)
)
elif checkpoint_impl == "composable":
for module in model.modules():
if isinstance(module, TransformerBlock):
checkpoint(module)
# Apply FSDP
fsdp_kwargs = {"reshard_after_forward": reshard_after_forward}
if module_grouping == "mem_eff":
assert model_args.n_layers == 3
fully_shard(model.layers[0], **fsdp_kwargs)
fully_shard([model.layers[1], model.layers[2]], **fsdp_kwargs)
fully_shard([model.tok_embeddings, model.pos_embeddings], **fsdp_kwargs)
# Embedding weights are not needed for embedding backward
model.tok_embeddings.set_unshard_in_backward(False)
fully_shard([model.norm, model.output], **fsdp_kwargs)
elif module_grouping == "mem_eff_weight_tied":
fully_shard([model.tok_embeddings, model.output], **fsdp_kwargs)
for layer in model.layers:
fully_shard(layer, **fsdp_kwargs)
elif module_grouping == "block":
for layer in model.layers:
fully_shard(layer, **fsdp_kwargs)
else:
raise NotImplementedError(f"Unknown module grouping: {module_grouping}")
fully_shard(model, **fsdp_kwargs)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.manual_seed(42 + self.rank)
# Reuse the same input across iterations to avoid loss explosion from
# trying to learn from random inputs
inp = torch.randint(0, vocab_size, (3, 64), device="cuda")
check_sharded_parity(
self, ref_model, model, prefixes_to_ignore=prefixes_to_ignore
)
for iter_idx in range(10):
losses: List[torch.Tensor] = []
for _model in (ref_model, model):
torch.manual_seed(iter_idx + 1) # for dropout determinism
losses.append(_model(inp).sum())
losses[-1].backward()
if not testing_compile:
check_sharded_parity(
self, ref_model, model, prefixes_to_ignore=prefixes_to_ignore
)
self.assertEqual(losses[0], losses[1])
for _optim in (ref_optim, optim):
_optim.step()
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
if not testing_compile:
check_sharded_parity(
self, ref_model, model, prefixes_to_ignore=prefixes_to_ignore
)
class TestFullyShardShardPlacementFnMultiProcess(FSDPTest):
@property
def world_size(self) -> int:
return min(8, torch.cuda.device_count())
@skip_if_lt_x_gpu(2)
def test_train_parity_shard_placement_fn_shard_largest_dim(self):
torch.manual_seed(42)
model_args = ModelArgs(n_layers=3, dropout_p=0.0)
model = Transformer(model_args)
ref_model = copy.deepcopy(model).cuda()
ref_optim = torch.optim.AdamW(ref_model.parameters(), lr=1e-2)
def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
largest_dim = -1
largest_dim_size = -1
for dim, dim_size in enumerate(param.shape):
if dim_size > largest_dim_size:
largest_dim = dim
largest_dim_size = dim_size
return Shard(largest_dim)
for layer in model.layers:
fully_shard(layer, shard_placement_fn=shard_placement_fn)
fully_shard(model, shard_placement_fn=shard_placement_fn)
optim = torch.optim.AdamW(model.parameters(), lr=1e-2)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
full_param = param.full_tensor()
self.assertEqual(full_param, ref_param)
torch.manual_seed(42 + self.rank)
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
for iter_idx in range(5):
ref_loss = ref_model(inp).sum()
loss = model(inp).sum()
self.assertEqual(ref_loss, loss)
ref_loss.backward()
loss.backward()
for param in ref_model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
ref_optim.step()
optim.step()
ref_optim.zero_grad()
optim.zero_grad()
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
full_param = param.full_tensor()
self.assertEqual(full_param, ref_param)
class TestFullyShardShardPlacementFnMultiThread(FSDPTestMultiThread):
@property
def world_size(self) -> int:
return 4
@unittest.skipIf(not TEST_CUDA, "no cuda")
def test_shard_placement_fn_contiguous_params_grads(self):
dim = 4
model = MLP(dim=dim)
def shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
if param.ndim > 1:
return Shard(1)
return Shard(0)
fully_shard(model.in_proj, shard_placement_fn=shard_placement_fn)
fully_shard(model.out_proj, shard_placement_fn=shard_placement_fn)
fully_shard(model, shard_placement_fn=shard_placement_fn)
def assert_contiguous_params(module: nn.Module, args: Any):
for param in module.parameters():
self.assertTrue(param.is_contiguous())
model.in_proj.register_forward_pre_hook(assert_contiguous_params)
model.out_proj.register_forward_pre_hook(assert_contiguous_params)
for param in model.parameters():
self.assertTrue(param.is_contiguous())
self.assertTrue(param.to_local().is_contiguous())
inp = torch.randn((2, dim), device="cuda")
model(inp).sum().backward()
for param in model.parameters():
self.assertTrue(param.is_contiguous())
self.assertTrue(param.to_local().is_contiguous())
self.assertTrue(param.grad.is_contiguous())
self.assertTrue(param.grad.to_local().is_contiguous())
class TestFullyShardSharedParams(FSDPTest):
@property
def world_size(self) -> int:
return min(4, torch.cuda.device_count())
@skip_if_lt_x_gpu(2)
def test_train_parity_with_shared_params(self):
self.run_subtests(
{
"reshard_after_forward": [False, True],
"use_activation_checkpointing": [False, True],
},
self._test_train_shared_params,
)
def _test_train_shared_params(
self,
reshard_after_forward: bool,
use_activation_checkpointing: bool,
):
torch.manual_seed(42)
model_args = ModelArgs(n_layers=3, dropout_p=0.0, weight_tying=True)
model = Transformer(model_args)
ref_model = copy.deepcopy(model).cuda()
replicate(ref_model, device_ids=[self.rank])
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
for module in model.modules():
if isinstance(module, TransformerBlock):
if use_activation_checkpointing:
checkpoint(module)
fully_shard(module, reshard_after_forward=reshard_after_forward)
fully_shard(model, reshard_after_forward=reshard_after_forward)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.manual_seed(42 + self.rank + 1)
for iter_idx in range(10):
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
self.assertEqual(losses[0], losses[1])
class TestFullyShardGradientAccumulation(FSDPTest):
@property
def world_size(self) -> int:
return min(4, torch.cuda.device_count())
@skip_if_lt_x_gpu(2)
def test_gradient_accumulation(self):
"""
Tests gradient accumulation with/without gradient reduction and
with/without resharding after backward.
"""
meshes = [init_device_mesh("cuda", (self.world_size,))] # always test FSDP
if self.world_size == 4: # test HSDP too if enough GPUs
shard_size, replicate_size = 2, 2
meshes.append(
init_device_mesh(
"cuda",
(replicate_size, shard_size),
mesh_dim_names=("dp_replicate", "dp_shard"),
)
)
self.run_subtests(
{
"mesh": meshes,
"reshard_after_forward": [True, False, 2],
# "all": disable reduce-scatter for all modules
# "root_only": disable reduce-scatter for root's linear only
# "some_mlps": disable reduce-scatter for some MLPs
"mode": ["all", "root_only", "some_mlps"],
"reshard_after_backward": [False, True],
"offload_policy": [OffloadPolicy(), CPUOffloadPolicy()],
# For HSDP only:
# `True`: reduce-scatter only (no all-reduce) each microbatch
# until the last microbatch
# `False`: neither reduce-scatter nor all-reduce each
# microbatch until the last microbatch
"reduce_scatter_only": [False, True],
},
self._test_gradient_accumulation,
)
def _test_gradient_accumulation(
self,
mesh: DeviceMesh,
reshard_after_forward: Union[bool, int],
mode: str,
reshard_after_backward: bool,
offload_policy: OffloadPolicy,
reduce_scatter_only: bool, # for HSDP
):
if (
(
not reshard_after_backward
and (reshard_after_forward is not False or mode == "some_mlps")
)
or (
isinstance(offload_policy, CPUOffloadPolicy)
and reshard_after_forward is not True
)
or (mesh.ndim != 2 and reduce_scatter_only)
):
return # skip since not common or applicable
torch.manual_seed(42)
batch_size, lin_dim, num_mlps, num_microbatches = (2, 32, 3, 3)
if mode == "some_mlps":
num_mlps_to_disable_reduce_scatter = 2
modules = [nn.Linear(lin_dim, lin_dim)]
modules.extend(MLP(lin_dim) for _ in range(num_mlps))
model = nn.Sequential(*modules)
ref_model = copy.deepcopy(model).cuda()
fully_shard_fn = functools.partial(
fully_shard,
mesh=mesh,
reshard_after_forward=reshard_after_forward,
offload_policy=offload_policy,
)
for mlp in model[1:]:
fully_shard_fn(mlp)
fully_shard_fn(model) # root gets the 1st linear
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
def set_grad_sync_flag(
module: nn.Module, is_last_microbatch: bool, recurse: bool = True
):
if reduce_scatter_only:
module.set_requires_all_reduce(is_last_microbatch, recurse=recurse)
else:
module.set_requires_gradient_sync(is_last_microbatch, recurse=recurse)
def set_backward_flags(_model: nn.Module, is_last_microbatch: bool):
if mode == "all":
set_grad_sync_flag(_model, is_last_microbatch)
if not reshard_after_backward:
_model.set_reshard_after_backward(is_last_microbatch)
elif mode == "some_mlps":
for mlp in model[1 : 1 + num_mlps_to_disable_reduce_scatter]:
set_grad_sync_flag(mlp, is_last_microbatch)
if not reshard_after_backward:
mlp.set_reshard_after_backward(is_last_microbatch)
elif mode == "root_only":
set_grad_sync_flag(model, is_last_microbatch, recurse=False)
if not reshard_after_backward:
model.set_reshard_after_backward(is_last_microbatch, recurse=False)
torch.manual_seed(42 + self.rank + 1)
for iter_idx in range(5):
comm_count_list = []
for microbatch_idx in range(num_microbatches):
is_last_microbatch = microbatch_idx == num_microbatches - 1
set_backward_flags(model, is_last_microbatch)
inp = torch.randn(batch_size, lin_dim, device="cuda")
losses: List[torch.Tensor] = []
for _model in (ref_model, model):
with CommDebugMode() as comm_mode:
losses.append(_model(inp).sum())
losses[-1].backward()
comm_count_list.append(comm_mode.get_comm_counts())
self.assertEqual(losses[0], losses[1])
comm_counts = defaultdict(int)
for comm_count_dict in comm_count_list:
for collective, count in comm_count_dict.items():
comm_counts[collective] += count
all_gather_count = comm_counts[c10d_ops._allgather_base_]
reduce_scatter_count = comm_counts[c10d_ops._reduce_scatter_base_]
all_reduce_count = comm_counts[c10d_ops.allreduce_]
# Expect one reduce-scatter per MLP plus one for the root's linear
# on the last microbatch
expected_reduce_scatter_count = num_mlps + 1
if mode == "some_mlps":
# Expect additional reduce-scatters for non-disabled MLPs and
# the root's linear
expected_reduce_scatter_count += (
num_mlps - num_mlps_to_disable_reduce_scatter + 1
) * (num_microbatches - 1)
elif mode == "root_only":
# Expect additional reduce-scatters for all MLPs
expected_reduce_scatter_count += (num_mlps) * (num_microbatches - 1)
expected_all_reduce_count = (
expected_reduce_scatter_count if mesh.ndim == 2 else 0
)
if reduce_scatter_only:
# Specially for HSDP if only reduce-scattering but not
# all-reducing until the last microbatch, expect one
# reduce-scatter per MLP plus for the root per microbatch
expected_reduce_scatter_count = (num_mlps + 1) * num_microbatches
self.assertEqual(reduce_scatter_count, expected_reduce_scatter_count)
self.assertEqual(all_reduce_count, expected_all_reduce_count)
# Expect one all-gather per MLP plus one for the root's linear in
# the first microbatch's forward
expected_all_gather_count = num_mlps + 1
if reshard_after_forward is not False: # `True` or `2`
# Add the number of MLPs without the +1 for the backward
# all-gathers since the root does not reshard after forward
expected_all_gather_count += num_mlps
# Multiply by the number of microbatches since these
# all-gathers run every microbatch
expected_all_gather_count *= num_microbatches
elif reshard_after_backward: # `reshard_after_forward=False`
expected_all_gather_count *= num_microbatches
elif mode == "all": # `reshard_after_forward/backward=False`
# Only reshard parameters after the last microbatch's backward,
# so there should not be any more all-gathers
pass
elif mode == "root_only": # `reshard_after_forward/backward=False`
# The MLPs should still contribute all-gathers in each
# microbatch forward
expected_all_gather_count += num_mlps * (num_microbatches - 1)
self.assertEqual(all_gather_count, expected_all_gather_count)
for param in ref_model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
check_sharded_parity(self, ref_model, model)
for _optim in (optim, ref_optim):
_optim.step()
# When `set_to_none=False`, we are exercising mixing
# gradient accumulation with and without communication
_optim.zero_grad(set_to_none=(iter_idx % 2))
@skip_if_lt_x_gpu(2)
def test_1f1b_microbatching(self):
self.run_subtests(
{
"use_explicit_unshard": [False, True],
"reshard_after_backward": [False, True],
},
self._test_1f1b_microbatching,
)
def _test_1f1b_microbatching(
self, use_explicit_unshard: bool, reshard_after_backward: bool
):
torch.manual_seed(42)
model_args = ModelArgs(dropout_p=0.0)
model = Transformer(model_args)
ref_model = copy.deepcopy(model).cuda()
ref_optim = torch.optim.AdamW(ref_model.parameters(), lr=1e-2)
for module in model.modules():
if isinstance(module, TransformerBlock):
fully_shard(module, reshard_after_forward=False)
fully_shard(model, reshard_after_forward=False)
optim = torch.optim.AdamW(model.parameters(), lr=1e-2)
num_microbatches = 3
local_batch_size = 2
torch.manual_seed(42 + self.rank + 1)
inps = [
torch.randint(
0, model_args.vocab_size, (local_batch_size, 16), device="cuda"
)
for _ in range(num_microbatches)
]
# Before pipelining, we may prefer to issue all all-gathers ahead of
# time to increase overlap opportunity at no difference in parameter
# memory usage since we do not reshard after forward
if use_explicit_unshard:
for module in model.modules():
if isinstance(module, FSDPModule):
module.unshard(async_op=True)
# Emulate the 1f1b pipeline schedule and only reduce gradients on the
# last microbatch
losses: List[torch.Tensor] = []
ref_losses: List[torch.Tensor] = []
for inp_idx, inp in enumerate(inps):
is_last_microbatch = inp_idx == num_microbatches - 1
model.set_requires_gradient_sync(is_last_microbatch)
model.set_is_last_backward(is_last_microbatch)
if not reshard_after_backward:
model.set_reshard_after_backward(is_last_microbatch)
losses.append(model(inp).sum())
losses[-1].backward()
ref_losses.append(ref_model(inp).sum())
ref_losses[-1].backward()
for param in ref_model.parameters():
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
for loss, ref_loss in zip(losses, ref_losses):
self.assertEqual(loss, ref_loss)
optim.step()
ref_optim.step()
check_sharded_parity(self, ref_model, model)
class TestFullyShardNDTraining(FSDPTest):
@property
def world_size(self) -> int:
return min(8, torch.cuda.device_count())
def init_global_mesh(self) -> DeviceMesh:
# Prefer to test with >=8 GPUs, but for 2 GPUs, use 2-way TP
dp_size = 2 if self.world_size > 2 else 1
pp_size = 2 if self.world_size > 4 else 1
return init_device_mesh(
"cuda",
(pp_size, dp_size, self.world_size // (dp_size * pp_size)),
mesh_dim_names=("pp", "dp", "tp"),
)
@skip_if_lt_x_gpu(4)
def test_2d_mlp_with_nd_mesh(self):
global_mesh = self.init_global_mesh()
self.run_subtests(
{
"reshard_after_forward": [False, True],
"use_activation_checkpointing": [False, True],
# TODO: change "mlp_dim" back to [3, 16, 17] when uneven sharding
# is supported for FSDP+TP
"mlp_dim": [4, 16, 20],
"foreach": [False],
},
functools.partial(self._test_2d_mlp_with_nd_mesh, global_mesh),
)
def _test_2d_mlp_with_nd_mesh(
self,
global_mesh: DeviceMesh,
reshard_after_forward: bool,
use_activation_checkpointing: bool,
mlp_dim: int,
foreach: bool,
):
global_mesh = self.init_global_mesh()
pp_mesh, dp_mesh, tp_mesh = (
global_mesh["pp"],
global_mesh["dp"],
global_mesh["tp"],
)
dp_pg = dp_mesh.get_group() # used for `replicate()`
torch.manual_seed(42)
model = MLPStack(mlp_dim)
ref_model = copy.deepcopy(model).cuda()
replicate(ref_model, device_ids=[self.rank], process_group=dp_pg)
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2, foreach=foreach)
model.parallelize(
tp_mesh,
dp_mesh,
use_activation_checkpointing,
reshard_after_forward=reshard_after_forward,
)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=foreach)
torch.manual_seed(42 + dp_pg.rank() + 1)
device = torch.device("cuda")
for iter_idx in range(10):
inp = torch.randn((8, mlp_dim), device=device)
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
self.assertEqual(losses[0], losses[1])
for n, p in model.named_parameters():
self.assertIsInstance(p, DTensor)
self.assertEqual(p.device_mesh.ndim, 2)
self.assertEqual(len(p.placements), 2)
self.assertEqual(p.device_mesh.mesh_dim_names, ("dp", "tp"))
class TestFullyShardHSDP3DTraining(FSDPTest):
@property
def world_size(self) -> int:
return min(8, torch.cuda.device_count())
def init_global_mesh(self) -> DeviceMesh:
return init_device_mesh(
"cuda",
(2, 2, 2),
mesh_dim_names=("dp_replicate", "dp_shard", "tp"),
)
@skip_if_lt_x_gpu(8)
def test_3d_mlp_with_nd_mesh(self):
global_mesh = self.init_global_mesh()
self.run_subtests(
{
"reshard_after_forward": [False, True],
"use_activation_checkpointing": [False, True],
# TODO: change "mlp_dim" back to [3, 16, 17] when uneven sharding
# is supported for FSDP+TP
"mlp_dim": [4, 16, 20],
"foreach": [False],
},
functools.partial(self._test_3d_mlp_with_nd_mesh, global_mesh),
)
def _test_3d_mlp_with_nd_mesh(
self,
global_mesh: DeviceMesh,
reshard_after_forward: bool,
use_activation_checkpointing: bool,
mlp_dim: int,
foreach: bool,
):
global_mesh = self.init_global_mesh()
dp_mesh, tp_mesh = global_mesh["dp_replicate", "dp_shard"], global_mesh["tp"]
dp_pg = dp_mesh._flatten().get_group() # used for `replicate()`
torch.manual_seed(42)
model = MLPStack(mlp_dim)
ref_model = copy.deepcopy(model).cuda()
replicate(ref_model, device_ids=[self.rank], process_group=dp_pg)
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2, foreach=foreach)
model.parallelize(
tp_mesh,
dp_mesh,
use_activation_checkpointing,
reshard_after_forward=reshard_after_forward,
)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=foreach)
torch.manual_seed(42 + dp_pg.rank() + 1)
device = torch.device("cuda")
for iter_idx in range(10):
inp = torch.randn((8, mlp_dim), device=device)
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
self.assertEqual(losses[0], losses[1])
for n, p in model.named_parameters():
self.assertIsInstance(p, DTensor)
self.assertEqual(p.device_mesh.ndim, 3)
self.assertEqual(len(p.placements), 3)
self.assertEqual(
p.device_mesh.mesh_dim_names, ("dp_replicate", "dp_shard", "tp")
)
class TestFullyShardHSDPTraining(FSDPTest):
@property
def world_size(self) -> int:
return min(4, torch.cuda.device_count())
@skip_if_lt_x_gpu(2)
def test_train_parity_hsdp(self):
shard_size = 2 if self.world_size > 2 else 1
replicate_size = self.world_size // shard_size
global_mesh = init_device_mesh(
"cuda",
(replicate_size, shard_size),
mesh_dim_names=("dp_replicate", "dp_shard"),
)
self.run_subtests(
{
"reshard_after_forward": [False, True],
"use_activation_checkpointing": [False, True],
"mlp_dim": [3, 16, 17],
"sync_gradients_at_last_batch": [True, False],
},
functools.partial(self._test_train_parity_hsdp, global_mesh),
)
def _test_train_parity_hsdp(
self,
global_mesh: DeviceMesh,
reshard_after_forward: bool,
use_activation_checkpointing: bool,
mlp_dim: int,
sync_gradients_at_last_batch: bool,
):
torch.manual_seed(42)
model = nn.Sequential(
nn.LayerNorm(mlp_dim, bias=False),
MLP(mlp_dim, dim_multiplier=3),
MLP(mlp_dim),
MLP(mlp_dim, dim_multiplier=3),
)
ref_model = copy.deepcopy(model).cuda()
replicate(ref_model, device_ids=[self.rank])
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2)
for mlp in model:
if use_activation_checkpointing:
checkpoint(mlp)
fully_shard(
mlp, mesh=global_mesh, reshard_after_forward=reshard_after_forward
)
fully_shard(
model, mesh=global_mesh, reshard_after_forward=reshard_after_forward
)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
check_sharded_parity(self, ref_model, model)
torch.manual_seed(42 + self.rank + 1)
device = torch.device("cuda")
num_microbatches = 3
for iter_idx in range(5):
for microbatch_idx in range(num_microbatches):
is_last_microbatch = microbatch_idx == num_microbatches - 1
if sync_gradients_at_last_batch:
model.set_requires_gradient_sync(is_last_microbatch)
inp = torch.randn((8, mlp_dim), device=device)
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
losses.append(_model(inp).sum())
losses[-1].backward()
self.assertEqual(losses[0], losses[1])
check_sharded_parity(self, ref_model, model)
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.step()
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
check_sharded_parity(self, ref_model, model)
class TestFullyShardCustomForwardMethod(FSDPTest):
@property
def world_size(self) -> int:
return min(torch.cuda.device_count(), 2)
@skip_if_lt_x_gpu(2)
def test_register_fsdp_forward_method(self):
"""Based on https://github.com/pytorch/pytorch/issues/109385"""
class VisionTransformer(nn.Module):
def __init__(self) -> None:
super().__init__()
self.patch_proj = nn.Conv2d(3, 1024, kernel_size=14, stride=14)
def forward_features(self, imgs: torch.Tensor) -> torch.Tensor:
return self.patch_proj(imgs).flatten(2).transpose(1, 2)
def forward(self, imgs: torch.Tensor) -> torch.Tensor:
return self.forward_features(imgs).sum(dim=1)
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.vit, self.projector = VisionTransformer(), nn.Linear(1024, 256)
def forward(self, imgs: torch.Tensor) -> torch.Tensor:
# Run `vit.forward_features`, which is not `forward`!
patch_embeddings = self.vit.forward_features(imgs)
return self.projector(patch_embeddings)
torch.manual_seed(42)
model = Model()
ref_model = copy.deepcopy(model).cuda()
fully_shard(model.vit)
fully_shard(model.projector)
fully_shard(model)
register_fsdp_forward_method(model.vit, "forward_features")
torch.manual_seed(42 + self.rank + 1)
inp = torch.randn(4, 3, 224, 224, device="cuda")
ref_loss = ref_model(inp).sum()
loss = model(inp).sum()
self.assertEqual(ref_loss, loss)
ref_loss.backward()
loss.backward()
for param in ref_model.parameters():
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
check_sharded_parity(self, ref_model, model)
if __name__ == "__main__":
run_tests()
|