1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
|
# Owner(s): ["oncall: distributed"]
import copy
import functools
import io
from copy import deepcopy
from typing import List, Optional, Type
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import replicate
from torch.distributed._tensor import DTensor, init_device_mesh, Replicate, Shard
from torch.distributed.checkpoint.state_dict import (
get_model_state_dict,
get_optimizer_state_dict,
set_model_state_dict,
set_optimizer_state_dict,
StateDictOptions,
)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import (
CPUOffloadPolicy,
fully_shard,
FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp._common_utils import (
_get_module_fsdp_state,
clean_tensor_name,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.distributed.tensor.parallel.ddp import _pre_dp_module_transform
from torch.distributed.tensor.parallel.fsdp import DTensorExtensions
from torch.distributed.tensor.parallel.input_reshard import input_reshard
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest, MLP, MLPStack
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfRocm,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
ModelArgs,
Transformer,
with_comms,
)
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.net1 = nn.Linear(5, 8)
self.relu = nn.ReLU()
self.net2 = nn.Linear(8, 4)
self.net3 = nn.Linear(4, 12)
def forward(self, x):
x = F.relu(self.net1(x))
x = F.relu(self.net2(x))
x = F.relu(self.net3(x))
return x
def get_input(self):
return torch.rand(4, 5, device="cuda")
class SimpleModelUneven(nn.Module):
def __init__(self):
super().__init__()
torch.manual_seed(0)
self.net1 = nn.Linear(5, 10)
self.relu = nn.ReLU()
self.net2 = nn.Linear(10, 15)
self.net3 = nn.Linear(15, 30)
self.net4 = nn.Linear(30, 5)
def forward(self, x):
x = F.relu(self.net1(x))
x = F.relu(self.net2(x))
x = F.relu(self.net3(x))
x = self.net4(x)
return x
def get_input(self):
return torch.rand(4, 5, device="cuda")
class TestFullyShard2DTraining(FSDPTest):
global c10d_ops
global funcol
c10d_ops = torch.ops.c10d
funcol = torch.ops.c10d_functional
@property
def world_size(self) -> int:
return min(4, torch.cuda.device_count())
def init_global_mesh(self) -> DeviceMesh:
# Prefer to test with >=4 GPUs, but for 2 GPUs, use 2-way TP
dp_size = 2 if self.world_size > 2 else 1
return init_device_mesh(
"cuda", (dp_size, self.world_size // dp_size), mesh_dim_names=("dp", "tp")
)
# TODO: remove this test when uneven sharding is supported for FSDP+TP
@skip_if_lt_x_gpu(2)
def test_2d_uneven_shard_raise_error(self):
global_mesh = self.init_global_mesh()
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
model = MLPStack(3)
with self.assertRaisesRegex(NotImplementedError, "uneven sharding"):
model.parallelize(tp_mesh, dp_mesh, False)
@skip_if_lt_x_gpu(2)
@skipIfRocm
def test_train_parity_2d_mlp(self):
global_mesh = self.init_global_mesh()
self.run_subtests(
{
"reshard_after_forward": [False, True],
"use_activation_checkpointing": [False, True],
# TODO: change "mlp_dim" back to [3, 16, 17] when uneven sharding
# is supported for FSDP+TP
"mlp_dim": [4, 16, 20],
},
functools.partial(self._test_train_parity_2d_mlp, global_mesh),
)
def _test_train_parity_2d_mlp(
self,
global_mesh: DeviceMesh,
reshard_after_forward: bool,
use_activation_checkpointing: bool,
mlp_dim: int,
):
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
dp_pg = dp_mesh.get_group() # used for `replicate()`
torch.manual_seed(42)
model = MLPStack(mlp_dim)
ref_model = copy.deepcopy(model).cuda()
replicate(ref_model, device_ids=[self.rank], process_group=dp_pg)
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2, foreach=False)
model.parallelize(
tp_mesh,
dp_mesh,
use_activation_checkpointing,
reshard_after_forward=reshard_after_forward,
)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=False)
torch.manual_seed(42 + dp_pg.rank() + 1)
device = torch.device("cuda")
for iter_idx in range(10):
inp = torch.randn((8, mlp_dim), device=device)
losses: List[torch.Tensor] = []
for _model, _optim in ((ref_model, ref_optim), (model, optim)):
_optim.zero_grad(set_to_none=(iter_idx % 2 == 0))
losses.append(_model(inp).sum())
losses[-1].backward()
_optim.step()
self.assertEqual(losses[0], losses[1])
@skip_if_lt_x_gpu(2)
@skipIfRocm
def test_train_parity_2d_transformer(self):
self.run_subtests(
{"use_shard_placement_fn": [False, True]},
self._test_train_parity_2d_transformer,
)
def _test_train_parity_2d_transformer(self, use_shard_placement_fn: bool):
torch.manual_seed(42)
model_args = ModelArgs(n_layers=3, dropout_p=0.0)
model = Transformer(model_args)
ref_model = copy.deepcopy(model).cuda()
ref_optim = torch.optim.AdamW(ref_model.parameters(), lr=1e-2)
dp_size, tp_size = self.world_size // 2, 2
global_mesh = init_device_mesh(
"cuda", (dp_size, tp_size), mesh_dim_names=("dp", "tp")
)
model = Transformer.parallelize(model, global_mesh["tp"], use_seq_parallel=True)
def _shard_placement_fn(param: nn.Parameter) -> Optional[Shard]:
if isinstance(param, DTensor):
for placement in param.placements:
if isinstance(placement, Shard):
shard_dim = param.ndim - 1 - placement.dim
assert shard_dim >= 0, f"{param.shape}"
return Shard(shard_dim)
return Shard(0)
shard_placement_fn = _shard_placement_fn if use_shard_placement_fn else None
for layer in model.layers:
fully_shard(
layer, mesh=global_mesh["dp"], shard_placement_fn=shard_placement_fn
)
fully_shard(
model, mesh=global_mesh["dp"], shard_placement_fn=shard_placement_fn
)
optim = torch.optim.AdamW(model.parameters(), lr=1e-2)
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
full_param = param.full_tensor()
self.assertEqual(full_param, ref_param)
torch.manual_seed(42 + global_mesh.get_local_rank("dp"))
inp = torch.randint(0, model_args.vocab_size, (2, 16), device="cuda")
for iter_idx in range(5):
ref_loss = ref_model(inp).sum()
loss = model(inp).sum()
self.assertEqual(ref_loss, loss)
ref_loss.backward()
loss.backward()
for param in ref_model.parameters():
if param.grad is not None:
dist.all_reduce(
param.grad,
group=global_mesh.get_group("dp"),
op=dist.ReduceOp.AVG,
)
# Specially check the TP placement for `pos_embeddings.weight` and
# its which since the grad naturally has replicate placement,
# requiring FSDP to redistribute it to shard placement before FSDP
# runs its reduce-scatter
self.assertIsInstance(model.pos_embeddings.weight.placements[1], Shard)
self.assertIsInstance(model.pos_embeddings.weight.grad.placements[1], Shard)
for ref_param, (param_name, param) in zip(
ref_model.parameters(), model.named_parameters()
):
full_grad = param.grad.full_tensor()
ref_grad = ref_param.grad
self.assertEqual(ref_param.grad, full_grad)
ref_optim.step()
optim.step()
ref_optim.zero_grad()
optim.zero_grad()
for param, ref_param in zip(model.parameters(), ref_model.parameters()):
full_param = param.full_tensor()
self.assertEqual(full_param, ref_param)
@skip_if_lt_x_gpu(2)
@skipIfRocm
def test_tp_with_fsdp_offloading(self):
global_mesh = init_device_mesh(
"cuda", (1, self.world_size), mesh_dim_names=("dp", "tp")
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
torch.manual_seed(42)
mlp_dim = 16
model = MLPStack(mlp_dim)
ref_model = copy.deepcopy(model).cuda()
ref_optim = torch.optim.Adam(ref_model.parameters(), lr=1e-2, foreach=False)
# Parallelize with N-way TP and 1-way FSDP
model.parallelize(
tp_mesh,
dp_mesh,
use_activation_checkpointing=False,
reshard_after_forward=True,
offload_policy=CPUOffloadPolicy(),
)
for param in model.parameters():
self.assertEqual(param.device.type, "cpu")
num_mlps = sum(isinstance(module, MLP) for module in model.modules())
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=False)
# NOTE: We still see the FSDP all-gather/reduce-scatter c10d ops
# called, but they will just be no-ops without issuing any kernels.
# We prefer to keep the no-op check at the c10d level, not in FSDP.
inp = torch.randn((4, mlp_dim), device="cuda") # same on all ranks
for iter_idx in range(10):
ref_optim.zero_grad()
optim.zero_grad()
with CommDebugMode() as fwd_comm_mode:
loss = model(inp).sum()
fwd_comm_counts = fwd_comm_mode.get_comm_counts()
self.assertEqual(len(fwd_comm_counts), 2)
self.assertEqual(fwd_comm_counts[funcol.all_reduce], num_mlps)
self.assertEqual(fwd_comm_counts[c10d_ops._allgather_base_], num_mlps)
ref_loss = ref_model(inp).sum()
self.assertEqual(loss, ref_loss)
with CommDebugMode() as bwd_comm_mode:
loss.backward()
bwd_comm_counts = bwd_comm_mode.get_comm_counts()
self.assertEqual(len(bwd_comm_counts), 3)
# First MLP's input gradient does not need to be all-reduced
self.assertEqual(bwd_comm_counts[funcol.all_reduce], num_mlps - 1)
self.assertEqual(bwd_comm_counts[c10d_ops._allgather_base_], num_mlps)
self.assertEqual(bwd_comm_counts[c10d_ops._reduce_scatter_base_], num_mlps)
ref_loss.backward()
optim.step()
ref_optim.step()
@skip_if_lt_x_gpu(2)
@with_temp_dir
def test_train_parity_2d_transformer_checkpoint_resume(self):
"""
Tests train parity of a 2D transformer without checkpointing against a
2D transformer with a checkpoint save/load.
"""
self.run_subtests(
{
"use_seq_parallel": [False, True],
# If reusing, then load into the same model/optimizer instance
# else construct new ones (requiring eager optim state init)
"reuse_model_optim": [False, True],
"optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
# TODO: need to update `parallelize` before including foreach=True for testing
"foreach": [False],
},
self._test_train_parity_2d_transformer_checkpoint_resume,
)
def _test_train_parity_2d_transformer_checkpoint_resume(
self,
use_seq_parallel: bool,
reuse_model_optim: bool,
optimizer_class: Type[torch.optim.Optimizer],
foreach: bool,
):
def train_step(
_model: nn.Module, _optim: torch.optim.Optimizer, _inp: torch.Tensor
) -> torch.Tensor:
loss = _model(_inp).sum()
loss.backward()
_optim.step()
_optim.zero_grad()
return loss
def parallelize(_model: Transformer, mesh: DeviceMesh, use_seq_parallel: bool):
_model = Transformer.parallelize(_model, mesh["tp"], use_seq_parallel)
for layer in _model.layers:
fully_shard(layer, mesh=mesh["dp"])
fully_shard(_model, mesh=mesh["dp"])
return _model
global_mesh = self.init_global_mesh()
# Baseline: run two iterations without checkpointing
seed = 42
torch.manual_seed(seed)
model_args = ModelArgs(dropout_p=0.0)
model_no_cp = parallelize(
Transformer(model_args), global_mesh, use_seq_parallel
)
optim_no_cp = optimizer_class(
model_no_cp.parameters(), lr=1e-2, foreach=foreach
)
torch.manual_seed(42 + global_mesh["dp"].get_local_rank() + 1)
inp = torch.randint(0, model_args.vocab_size, (3, 16), device="cuda")
loss_no_cp1 = train_step(model_no_cp, optim_no_cp, inp)
loss_no_cp2 = train_step(model_no_cp, optim_no_cp, inp)
# Test: run one iteration, save checkpoint, zero states or init new
# model/optimizer, load checkpoint, and run another iteration
torch.manual_seed(seed)
model_cp = parallelize(Transformer(model_args), global_mesh, use_seq_parallel)
optim_cp = optimizer_class(model_cp.parameters(), lr=1e-2, foreach=foreach)
loss_cp1 = train_step(model_cp, optim_cp, inp)
self.assertEqual(loss_no_cp1, loss_cp1)
sharded_sd = {
"model": get_model_state_dict(model_cp),
# Use `get_optimizer_state_dict` to handle eager optim state init
# when constructing a new optimizer instance
"optim": get_optimizer_state_dict(model_cp, optim_cp),
}
dcp.save(
state_dict=sharded_sd,
storage_writer=dcp.FileSystemWriter(self.temp_dir),
)
if reuse_model_optim:
with torch.no_grad():
for param in model_cp.parameters():
param.zero_()
optim_sd = optim_cp.state_dict()
for param_states in optim_sd["state"].values():
for state_value in param_states.values():
if torch.is_tensor(state_value):
state_value.zero_()
else:
torch.manual_seed(seed + 1) # different seed
model_cp = parallelize(
Transformer(model_args), global_mesh, use_seq_parallel
)
optim_cp = optimizer_class(model_cp.parameters(), lr=1e-2, foreach=foreach)
self.assertNotEqual(loss_no_cp2, train_step(model_cp, optim_cp, inp))
sharded_sd = {
"model": get_model_state_dict(model_cp),
"optim": get_optimizer_state_dict(model_cp, optim_cp),
}
dcp.load(
state_dict=sharded_sd,
storage_reader=dcp.FileSystemReader(self.temp_dir),
)
self.assertGreater(len(optim_cp.state_dict()["state"]), 0)
loss_cp2 = train_step(model_cp, optim_cp, inp)
self.assertEqual(loss_no_cp2, loss_cp2)
class TestFullyShard2DStateDict(DTensorTestBase):
@property
def backend(self):
# need to specify gloo backend for testing cpu offload
return "cpu:gloo,cuda:nccl"
@with_comms
@skip_if_lt_x_gpu(4)
def test_fully_shard_tp_2d_set_full_state_dict(self):
dummy_model = SimpleModel().cuda()
mesh_2d = init_device_mesh(
"cuda",
(2, self.world_size // 2),
mesh_dim_names=("dp", "tp"),
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
"net3": ColwiseParallel(),
}
model = parallelize_module(dummy_model, tp_mesh, parallelize_plan)
fully_shard(model, mesh=dp_mesh)
optim = torch.optim.Adam(model.parameters(), lr=0.01)
model(model.get_input()).sum().backward()
optim.step()
# ref_msd, ref_osd are both the default sharded state dict
ref_msd = copy.deepcopy(get_model_state_dict(model))
ref_osd = copy.deepcopy(get_optimizer_state_dict(model, optimizers=optim))
options = StateDictOptions(
full_state_dict=True, cpu_offload=True, broadcast_from_rank0=True
)
full_msd = get_model_state_dict(model, options=options)
full_osd = get_optimizer_state_dict(model, optimizers=optim, options=options)
# load full_msd and full_osd into model and optim.
# this loads the slice of full tensor into each rank's local DTensor.
set_model_state_dict(model, full_msd, options=options)
set_optimizer_state_dict(
model, optimizers=optim, optim_state_dict=full_osd, options=options
)
# check after setting full state dict, the model and optim default sharded state dict
# are the same as the initial default sharded state dict.
new_msd = get_model_state_dict(model)
new_osd = get_optimizer_state_dict(model, optimizers=optim)
self.assertEqual(ref_msd, new_msd)
self.assertEqual(ref_osd, new_osd)
class Test2dFSDP1ParallelIntegration(DTensorTestBase):
def init_model(self, device_type, model_parallel_size=2):
torch.manual_seed(0)
model = MLPModule(device_type)
torch.manual_seed(0)
twod_model = MLPModule(device_type)
model = DDP(model)
# 2-D mesh is [dp, tp]
world_size = dist.get_world_size()
mesh_2d = init_device_mesh(
device_type,
(world_size // model_parallel_size, model_parallel_size),
mesh_dim_names=("dp", "tp"),
)
dp_pg = mesh_2d.get_group(mesh_dim=0)
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
twod_model = parallelize_module(twod_model, mesh_2d["tp"], parallelize_plan)
_pre_dp_module_transform(twod_model)
# TODO: Add tests when using gradient_as_bucket_view and static_graph for DDP.
twod_model = DDP(twod_model, process_group=dp_pg)
return model, twod_model, dp_pg
def _check_module(self, m1, m2, check_grad=False):
named_parameters = dict(m1.named_parameters())
for name, param_m2 in m2.named_parameters():
if name not in named_parameters:
print(name, named_parameters.keys())
self.assertTrue(name in named_parameters)
param_m1 = named_parameters[name]
if check_grad:
param_m2 = param_m2.grad
param_m1 = param_m1.grad
if isinstance(param_m2, DTensor):
replicate = [Replicate()]
param_m2 = param_m2.redistribute(
device_mesh=param_m2.device_mesh, placements=replicate
).to_local()
self.assertEqual(param_m2, param_m1)
@with_comms
@skip_if_lt_x_gpu(4)
def test_2d_ddp_integration_functionality(self) -> None:
model, twod_model, dp_pg = self.init_model(self.device_type)
optim = torch.optim.Adam(model.parameters(), lr=3e-5)
twod_optim = torch.optim.Adam(twod_model.parameters(), lr=3e-5)
# Create Input
input_seed = dist.get_rank(dp_pg)
torch.manual_seed(input_seed + 1)
input = torch.rand(4, 10, device=self.device_type)
output = model(input)
twod_output = twod_model(input)
self.assertEqual(output, twod_output)
output.sum().backward()
twod_output.sum().backward()
self._check_module(model, twod_model, check_grad=True)
optim.step()
twod_optim.step()
self._check_module(model, twod_model)
torch.manual_seed(input_seed + 1004)
input = torch.rand(16, 10, device=self.device_type)
output = model(input)
twod_output = twod_model(input)
self.assertEqual(output, twod_output)
# TODO: Add save/load of 2D verification.
# TODO: add additional tests for multi_param_group, optim_in_backward,
# and fsdp_nested.
class TestNew2dParallelTraining(DTensorTestBase):
def _compare_params(self, m1, m2):
with FSDP.summon_full_params(m1):
with FSDP.summon_full_params(m2):
for n_p1, n_p2 in zip(m1.named_parameters(), m2.named_parameters()):
p1 = n_p1[1]
p2 = n_p2[1]
if n_p1[0] != n_p2[0]:
self.assertTrue(n_p1[0] in n_p2[0])
name = n_p1[0]
if name == "net2.bias" and self.rank != 0:
continue
if type(p2) is DTensor:
p2 = p2.redistribute(p2.device_mesh, [Replicate()]).to_local()
self.assertTrue(torch.allclose(p1, p2), f"{p1} vs {p2}")
@with_comms
@skip_if_lt_x_gpu(4)
def test_raise_invalid_tp_composition(self):
with self.assertRaisesRegex(
RuntimeError, r"Found TP device_mesh on the \d dimension of its parent mesh"
):
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("tp", "dp")
)
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
model_2d = parallelize_module(
SimpleModel().cuda(), mesh_2d["tp"], parallelize_plan
)
@with_comms
@skip_if_lt_x_gpu(4)
def test_2d_fsdp_state_enable_extension(self):
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
model = FSDP(
SimpleModel().cuda(),
device_mesh=mesh_2d["dp"],
)
fsdp_state = _get_module_fsdp_state(model)
self.assertTrue(isinstance(fsdp_state._fsdp_extension, DTensorExtensions))
def _test_2d_e2e_training(
self,
use_orig_params=False,
recompute_activation=False,
) -> None:
torch.manual_seed(0)
model = SimpleModel().cuda(self.rank)
model = FSDP(model, use_orig_params=use_orig_params)
optim = torch.optim.Adam(model.parameters(), lr=0.01)
torch.manual_seed(0)
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
model_2d = parallelize_module(SimpleModel().cuda(), tp_mesh, parallelize_plan)
model_2d = FSDP(
model_2d,
device_mesh=dp_mesh,
use_orig_params=use_orig_params,
)
optim_2d = torch.optim.Adam(model_2d.parameters(), lr=0.01)
if recompute_activation:
model_2d = input_reshard(model_2d, mesh_2d["tp"], 0)
# Check named parameters are returning the same name at least.
param_names_2d = [
clean_tensor_name(name) for name, _ in model_2d.named_parameters()
]
for name, _ in model.named_parameters():
name = clean_tensor_name(name)
if name not in param_names_2d:
print(name, param_names_2d)
self.assertTrue(name in param_names_2d)
self._compare_params(model, model_2d)
# TODO: add additional tests for multi_param_group and optim_in_backward.
for i in range(5):
# Ensure all input across TP ranks are same.
# TODO: add a get_group_rank() to DeviceMesh.
torch.manual_seed(i + dist.get_rank(dp_mesh.get_group(mesh_dim=0)))
input = torch.rand(4, 5).cuda(self.rank)
output = model(input)
output_2d = model_2d(input)
self.assertEqual(output, output_2d)
output.sum().backward()
output_2d.sum().backward()
optim.step()
optim_2d.step()
self.assertEqual(model(input), model_2d(input))
# Ensure all params are still the same after optimizer update.
self._compare_params(model, model_2d)
@with_comms
@skip_if_lt_x_gpu(4)
def test_2d_e2e_training_default(self):
self._test_2d_e2e_training()
@with_comms
@skip_if_lt_x_gpu(4)
def test_2d_e2e_training_use_orig_params(self):
self._test_2d_e2e_training(use_orig_params=True)
@with_comms
@skip_if_lt_x_gpu(4)
def test_2d_e2e_training_not_use_orig_params(self):
# TODO: need to revisit input_reshard API about why it failed multi-gpu tests.
# self._test_2d_e2e_training(recompute_activation=True)
self._test_2d_e2e_training(recompute_activation=False)
# TODO: update all state dict unit tests to use distributed.checkpoint.state_dict,
# and consolidate all the state_dict test in test.distributed.checkpoint.
class TestNew2dParallelStateDict(DTensorTestBase):
@property
def backend(self):
# need to specify gloo backend for testing cpu offload
return "cpu:gloo,cuda:nccl"
@with_comms
@skip_if_lt_x_gpu(4)
def test_fsdp_2d_extension(self):
"""
Test whether _fsdp_extension from FSDPstate has been set correctly.
"""
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
"net3": ColwiseParallel(),
}
model_2d = parallelize_module(
SimpleModel().cuda(),
mesh_2d["tp"],
parallelize_plan=parallelize_plan,
)
model_2d = FSDP(model_2d, device_mesh=mesh_2d["dp"], use_orig_params=True)
model_2d_fsdp_state = _get_module_fsdp_state(model_2d)
self.assertTrue(
isinstance(model_2d_fsdp_state._fsdp_extension, DTensorExtensions)
)
mesh_1d = init_device_mesh("cuda", (self.world_size,))
model_1d = FSDP(SimpleModel().cuda(), device_mesh=mesh_1d, use_orig_params=True)
model_1d_fsdp_state = _get_module_fsdp_state(model_1d)
self.assertEqual(model_1d_fsdp_state._fsdp_extension, None)
@with_comms
@skip_if_lt_x_gpu(4)
@parametrize("is_even_sharded_model", [True, False])
def test_2d_state_dict(self, is_even_sharded_model):
simple_model = SimpleModel if is_even_sharded_model else SimpleModelUneven
# Create a model without wrapper
torch.manual_seed(0)
no_wrap_model = simple_model().cuda(self.rank)
no_wrap_state_dict = no_wrap_model.state_dict()
# Create a model and sharded it with 2D FSDP + TP
torch.manual_seed(0)
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
model_2d = parallelize_module(simple_model().cuda(), tp_mesh, parallelize_plan)
model_2d = FSDP(model_2d, device_mesh=dp_mesh, use_orig_params=True)
FSDP.set_state_dict_type(
model_2d,
StateDictType.SHARDED_STATE_DICT,
)
state_dict_2d = model_2d.state_dict()
for no_wrap_items, two_d_items in zip(
no_wrap_state_dict.items(), state_dict_2d.items()
):
no_wrap_k, no_wrap_v = no_wrap_items
two_d_k, two_d_v = two_d_items
self.assertEqual(no_wrap_k, two_d_k)
# check if all value in 2D state_dict are DTensor
self.assertTrue(isinstance(two_d_v, DTensor))
self.assertEqual(len(two_d_v.placements), 2)
# the outer dimension is the FSDP dimension and the placement is always Shard(0)
self.assertEqual(two_d_v.placements[0], Shard(0))
self.assertEqual(two_d_v.device_mesh, mesh_2d)
# check if the parameter value is the same between 2D model and the model without wrapper
all_gather_two_d_v = two_d_v.redistribute(
mesh_2d, (Replicate(), Replicate())
)
self.assertEqual(
torch.allclose(no_wrap_v, all_gather_two_d_v.to_local()), True
)
@with_comms
@skip_if_lt_x_gpu(4)
@parametrize("is_even_sharded_model", [True, False])
def test_2d_load_state_dict(self, is_even_sharded_model):
simple_model = SimpleModel if is_even_sharded_model else SimpleModelUneven
torch.manual_seed(0)
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
model_2d = parallelize_module(simple_model().cuda(), tp_mesh, parallelize_plan)
model_2d = FSDP(model_2d, device_mesh=dp_mesh, use_orig_params=True)
optim_2d = torch.optim.Adam(model_2d.parameters(), lr=0.01)
FSDP.set_state_dict_type(
model_2d,
StateDictType.SHARDED_STATE_DICT,
)
checkpoint = io.BytesIO()
torch.save(model_2d.state_dict(), checkpoint)
# Deepcopy to save current state_dict to compare with the state_dict loaded back below.
ref_state_dict = deepcopy(model_2d.state_dict())
# Update the parameters so model.state_dict() will be different from ref_dtensor_sd.
model_2d(model_2d.get_input().cuda(self.rank)).sum().backward()
optim_2d.step()
# Load ref_state_dict back.
checkpoint.seek(0)
load_ref_state_dict = torch.load(checkpoint)
model_2d.load_state_dict(load_ref_state_dict)
new_state_dict = model_2d.state_dict()
# Check whether new_state_dict is the same as ref_state_dict.
for (k1, v1), (k2, v2) in zip(ref_state_dict.items(), new_state_dict.items()):
# check whether fqn are the same
self.assertEqual(k1, k2)
self.assertEqual(type(v1), DTensor)
self.assertEqual(type(v2), DTensor)
# check whether DTensor are the same
# TODO: 2D DTensor comparison is not supported at the time, so we are comparing the spec and the local tensor for now.
# TODO: Update it to compare the two DTensors once 2D DTensor comparison is supported.
self.assertEqual(v1.to_local(), v2.to_local())
self.assertEqual(v1.device_mesh, v2.device_mesh)
self.assertEqual(v1.placements, v2.placements)
@with_comms
@skip_if_lt_x_gpu(4)
@parametrize("is_even_sharded_model", [True, False])
def test_2d_optim_state_dict(self, is_even_sharded_model):
simple_model = SimpleModel if is_even_sharded_model else SimpleModelUneven
# Create a model without wrapper
torch.manual_seed(0)
no_wrap_model = simple_model().cuda(self.rank)
no_wrap_state_dict = no_wrap_model.state_dict()
no_wrap_optim = torch.optim.Adam(no_wrap_model.parameters(), lr=0.01)
no_wrap_model(no_wrap_model.get_input().cuda(self.rank)).sum().backward()
no_wrap_optim.step()
no_wrap_osd = get_optimizer_state_dict(no_wrap_model, optimizers=no_wrap_optim)
# Create a model and sharded it with 2D FSDP + TP
torch.manual_seed(0)
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
model_2d = parallelize_module(
simple_model().cuda(), mesh_2d["tp"], parallelize_plan
)
model_2d = FSDP(model_2d, device_mesh=mesh_2d["dp"], use_orig_params=True)
FSDP.set_state_dict_type(
model_2d,
StateDictType.SHARDED_STATE_DICT,
)
optim_2d = torch.optim.Adam(model_2d.parameters(), lr=0.01)
model_2d(model_2d.get_input().cuda(self.rank)).sum().backward()
optim_2d.step()
optim_2d_osd = get_optimizer_state_dict(model_2d, optimizers=optim_2d)
ref_optim_2d_osd = deepcopy(optim_2d_osd)
no_wrap_osd_states = no_wrap_osd["state"]
optim_2d_osd_states = optim_2d_osd["state"]
self.assertEqual(len(no_wrap_osd_states), len(optim_2d_osd_states))
self.assertEqual(no_wrap_osd_states.keys(), optim_2d_osd_states.keys())
for fqn, states in no_wrap_osd_states.items():
dist_states = optim_2d_osd_states.get(fqn)
for state_name, state in states.items():
dist_state = dist_states.get(state_name)
# If a state is DTensor, we all gather it in both DP and TP dimension to
# compare with no_wrap state.
if isinstance(dist_state, DTensor):
dist_state = (
dist_state.cuda()
.redistribute(placements=(Replicate(), Replicate()))
.to_local()
)
self.assertTrue(isinstance(dist_state, torch.Tensor))
self.assertTrue(torch.allclose(state, dist_state))
# Update the parameters 2d optim states will be different from ref_optim_state_dict.
model_2d(model_2d.get_input().cuda(self.rank)).sum().backward()
optim_2d.step()
set_optimizer_state_dict(
model_2d, optimizers=optim_2d, optim_state_dict=ref_optim_2d_osd
)
new_optim_2d_osd = get_optimizer_state_dict(model_2d, optimizers=optim_2d)
ref_optim_2d_osd_states = ref_optim_2d_osd["state"]
new_optim_2d_osd_states = optim_2d_osd["state"]
# Compare the new optim state dict after load with the reference one
self.assertEqual(len(ref_optim_2d_osd_states), len(new_optim_2d_osd_states))
self.assertEqual(ref_optim_2d_osd_states.keys(), new_optim_2d_osd_states.keys())
for fqn, states in ref_optim_2d_osd_states.items():
new_states = new_optim_2d_osd_states.get(fqn)
for state_name, state in states.items():
new_state = new_states.get(state_name)
if isinstance(new_state, DTensor):
self.assertEqual(new_state.placements, state.placements)
self.assertEqual(new_state.device_mesh, state.device_mesh)
self.assertTrue(
torch.allclose(new_state.to_local(), state.to_local())
)
else:
self.assertEqual(new_state, state)
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(4)
def test_fsdp1_tp_2d_set_full_state_dict(self):
"""
This is a workaround for loading full state dict into a FSDP1+TP 2D model.
Since named_parameters() in FSDP1 does not return DTensor, we don't have the information to shard the full_state_dict
and load it directly into the 2d model. In order to load a full state dict in FSDP1+TP 2D model, we need to do:
1) load the full state dict into a 1D FSDP model
2) dcp.save the full/shard state dict into storage
3) initialize a 2D FSDP1+TP model
4) get the default sharded state dict for the 2D model (full_state_dict=False)
5) dcp.load the state dict from storage
6) load the state dict into the 2D model
"""
dummy_model = SimpleModel().cuda()
mesh_1d = init_device_mesh("cuda", (self.world_size,))
model = FSDP(dummy_model, device_mesh=mesh_1d)
optim = torch.optim.Adam(model.parameters(), lr=0.01)
model(model.get_input()).sum().backward()
optim.step()
ref_full_msd = get_model_state_dict(
model, options=StateDictOptions(full_state_dict=True, cpu_offload=True)
)
ref_full_osd = get_optimizer_state_dict(
model,
optimizers=optim,
options=StateDictOptions(full_state_dict=True, cpu_offload=True),
)
state_dict = {"model": ref_full_msd, "optim": ref_full_osd}
# save the full state dict into storage first
dcp.save(state_dict, checkpoint_id=self.temp_dir)
# initialize 2d model
dummy_model = SimpleModel().cuda()
mesh_2d = init_device_mesh(
"cuda",
(2, self.world_size // 2),
mesh_dim_names=("dp", "tp"),
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
"net3": ColwiseParallel(),
}
model_2d = parallelize_module(dummy_model, tp_mesh, parallelize_plan)
model_2d = FSDP(model_2d, device_mesh=dp_mesh, use_orig_params=True)
optim_2d = torch.optim.Adam(model_2d.parameters(), lr=0.01)
# get the default sharded state dict for model_2d
# note this is because we can not set full_state_dict back to 2D directly
msd = get_model_state_dict(model_2d)
osd = get_optimizer_state_dict(model_2d, optimizers=optim_2d)
state_dict = {"model": msd, "optim": osd}
dcp.load(state_dict=state_dict, checkpoint_id=self.temp_dir)
set_model_state_dict(model_2d, state_dict["model"])
set_optimizer_state_dict(
model_2d, optimizers=optim_2d, optim_state_dict=state_dict["optim"]
)
# check after setting sharded state dict, the model and optim full state dict
# are the same as the initial full state dict.
new_full_msd = get_model_state_dict(
model, options=StateDictOptions(full_state_dict=True, cpu_offload=True)
)
new_full_osd = get_optimizer_state_dict(
model,
optimizers=optim,
options=StateDictOptions(full_state_dict=True, cpu_offload=True),
)
self.assertEqual(ref_full_msd, new_full_msd)
self.assertEqual(ref_full_osd, new_full_osd)
instantiate_parametrized_tests(TestNew2dParallelStateDict)
if __name__ == "__main__":
run_tests()
|