1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# Owner(s): ["oncall: distributed"]
import os
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn
from torch.distributed._composable.replicate import replicate
from torch.distributed._tensor import DTensor
from torch.distributed.fsdp import fully_shard
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import run_tests
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = nn.Linear(2, 2)
self.fc2 = nn.Linear(2, 2)
self.fc3 = nn.Linear(2, 2)
def forward(self, x):
return self.fc3(self.fc2(self.fc1(x)))
class ReplicateStateDictTest(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _init_pg(self):
dist.init_process_group(
backend="gloo",
rank=self.rank,
world_size=self.world_size,
store=dist.FileStore(self.file_name, self.world_size),
)
def _check_state_dict_parity(self, sd_1, sd_2):
for k1, k2 in zip(sd_1.keys(), sd_2.keys()):
self.assertEqual(k1, k2)
for v1, v2 in zip(sd_1.values(), sd_2.values()):
self.assertEqual(v1, v2)
def test_replicate_single_module_save_load(self):
"""
Tests that replicate() on a single module state_dict
matches local module state_dict.
"""
self._init_pg()
model = Net()
replicate_model = replicate(deepcopy(model))
local_sd = model.state_dict()
ddp_sd = replicate_model.state_dict()
self._check_state_dict_parity(local_sd, ddp_sd)
def test_replicate_non_root_multiple_save_load(self):
"""
Tests tha replicate() on multiple submodules matches
local module state_dict.
"""
self._init_pg()
model = Net()
replicate_model = deepcopy(model)
replicate(replicate_model.fc1)
replicate(replicate_model.fc2)
replicate(replicate_model.fc3)
local_sd = model.state_dict()
ddp_sd = replicate_model.state_dict()
self._check_state_dict_parity(local_sd, ddp_sd)
class ReplicateTest(MultiProcessTestCase):
@property
def world_size(self) -> int:
return 2
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _init_pg(self):
dist.init_process_group(
backend="gloo",
rank=self.rank,
world_size=self.world_size,
store=dist.FileStore(self.file_name, self.world_size),
)
def _compare_module(self, mod, replicate_mod):
local_batch_size = 1
global_batch_size = self.world_size * local_batch_size
input = torch.randn(global_batch_size, 2)
target = torch.randn(global_batch_size, 2)
def step_model(model, input, target):
model.train()
output = model(input)
loss = F.mse_loss(output, target.to(output.device))
loss.backward()
for param in model.parameters():
with torch.no_grad():
param -= param.grad
param.grad = None
for iteration in range(2):
step_model(mod, input, target)
step_model(
replicate_mod,
input[
self.rank * local_batch_size : (self.rank + 1) * local_batch_size
],
target[
self.rank * local_batch_size : (self.rank + 1) * local_batch_size
],
)
self.assertEqual(
len(list(mod.parameters())),
len(list(replicate_mod.parameters())),
)
for i, j in zip(mod.parameters(), replicate_mod.parameters()):
self.assertEqual(i, j, rtol=1.3e-06, atol=5e-5)
# Shuffle the input so that DDP input is different
torch.manual_seed(iteration)
input = input[torch.randperm(global_batch_size)]
def test_replicate_single_module(self):
self._init_pg()
model = Net()
replicate_model = replicate(deepcopy(model))
self._compare_module(model, replicate_model)
@skip_if_lt_x_gpu(2)
def test_replicate_move_args_kwargs_to_device(self):
class MyNet(nn.Module):
def __init__(self) -> None:
super().__init__()
self.a = nn.Linear(2, 2)
def forward(self, inp, *, kwarg=None):
if kwarg is not None:
inp = inp @ kwarg
return self.a(inp)
self._init_pg()
torch.cuda.set_device(self.rank)
model = MyNet().cuda()
replicate(model, device_id=torch.cuda.current_device())
# CPU input ensures replicate can move arg and kwargs to device.
a, b = torch.randn(2, 2), torch.randn(2, 2)
model(a, kwarg=b).sum().backward()
@skip_if_lt_x_gpu(2)
def test_replicate_ignore_module(self):
self._init_pg()
torch.cuda.set_device(self.rank)
# Seed ensures diff input and thus different local grads across ranks.
torch.manual_seed(self.rank)
torch.cuda.manual_seed(self.rank)
model = Net().cuda()
replicate(model, ignored_modules=[model.fc1])
# CPU input ensures that replicate can move input to GPU as DDP does.
inp = torch.randn(5, 2, device="cuda") * (self.rank + 1)
out = model(inp) * 10
out.sum().backward()
# FC1 grads should not be synchronized, FC2 and 3 should be.
fc1_grad = model.fc1.weight.grad
tensor_list = [torch.zeros_like(fc1_grad) for _ in range(dist.get_world_size())]
dist.all_gather(tensor_list, fc1_grad)
grad, rest = tensor_list[0], tensor_list[1:]
for g in rest:
self.assertNotEqual(grad, g)
for dp_grad in [model.fc2.weight.grad, model.fc3.weight.grad]:
tensor_list = [
torch.zeros_like(dp_grad) for _ in range(dist.get_world_size())
]
dist.all_gather(tensor_list, dp_grad)
grad, rest = tensor_list[0], tensor_list[1:]
for g in rest:
self.assertEqual(grad, g)
def test_replicate_multi_module(self):
self._init_pg()
model = Net()
replicate_model = deepcopy(model)
replicate(replicate_model.fc1)
replicate(replicate_model.fc2)
replicate(replicate_model.fc3)
self._compare_module(model, replicate_model)
def test_replicate_with_kwargs(self):
self._init_pg()
model = Net()
replicate_model = replicate(
deepcopy(model), bucket_cap_mb=1, gradient_as_bucket_view=True
)
self._compare_module(model, replicate_model)
@skip_if_lt_x_gpu(2)
def test_replicate_device_id(self):
self._init_pg()
model = Net()
model_cuda = deepcopy(model).cuda()
model_cuda2 = deepcopy(model_cuda)
replicate(model, device_id=torch.device("cpu"))
# DDP instance is attached in first pre forward
model(torch.randn(2, 2))
replicate_ddp_weakref = replicate.state(model)._ddp_weakref()
# Should be None for CPU training
self.assertEqual(None, replicate_ddp_weakref.device_ids)
replicate(model_cuda, device_id=torch.device(torch.cuda.current_device()))
# DDP instance is attached in first pre forward
model_cuda(torch.randn(2, 2))
replicate_ddp_weakref = replicate.state(model_cuda)._ddp_weakref()
self.assertEqual([0], replicate_ddp_weakref.device_ids)
# Pass in int as device_id
replicate(model_cuda2, device_id=int(torch.cuda.current_device()))
# DDP instance is attached in first pre forward
model_cuda2(torch.randn(2, 2))
replicate_ddp_weakref = replicate.state(model_cuda2)._ddp_weakref()
self.assertEqual([0], replicate_ddp_weakref.device_ids)
def test_replicate_wrong_device_id_type(self):
self._init_pg()
model = Net()
with self.assertRaisesRegex(
RuntimeError, "Expected device_id to be int or torch.device"
):
replicate(model, device_id=[torch.device("cpu")])
class ReplicateFullyShardInit(ReplicateTest):
@skip_if_lt_x_gpu(2)
def test_replicate_fully_shard_init(self):
class ToyModel(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linears = nn.Sequential(
nn.Linear(dim, dim, bias=False),
nn.Linear(dim, dim, bias=False),
nn.Linear(dim, dim, bias=False),
)
self.proj = nn.Linear(dim, dim, bias=False)
def forward(self, x: torch.Tensor):
y = self.linears(x)
y = self.proj(y)
return y
self._init_pg()
torch.cuda.set_device(self.rank)
dim = 3
bz = 2
model = ToyModel(dim).cuda()
for linear in model.linears:
fully_shard(linear)
fully_shard(model.linears)
replicate(model, device_id=torch.cuda.current_device())
for linear in model.linears:
self.assertTrue(isinstance(linear.weight, DTensor))
inp = torch.rand(bz, dim)
# trigger lazy init
model(inp).sum()
for linear in model.linears:
self.assertTrue(isinstance(linear.weight, DTensor))
if __name__ == "__main__":
run_tests()
|