1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
# Owner(s): ["oncall: distributed"]
import contextlib
import functools
import os
import unittest
from copy import deepcopy
from typing import Callable, Optional
import torch
import torch.distributed as dist
from torch import _inductor as inductor, nn
from torch._C import FileCheck
from torch._dynamo import compiled_autograd
from torch._dynamo.utils import counters
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed._composable.replicate import replicate
from torch.distributed.algorithms.ddp_comm_hooks import (
default_hooks as ddp_default_hooks,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
skip_if_lt_x_gpu,
skip_if_rocm_multiprocess,
sm_is_or_higher_than,
)
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.testing._internal.inductor_utils import HAS_GPU
from torch.utils.checkpoint import checkpoint
DIM = 2000
class Net(nn.Module):
def __init__(self, checkpoint=False):
super().__init__()
self.fc1 = nn.Linear(DIM, DIM)
self.fc2 = nn.Linear(DIM, DIM)
self.fc3 = nn.Linear(DIM, DIM)
self.fc4 = nn.Linear(DIM, DIM)
self.use_checkpoint = checkpoint
def forward(self, x):
if self.use_checkpoint:
_fc1 = checkpoint(self.fc1, x, use_reentrant=False)
else:
_fc1 = self.fc1(x)
return self.fc4(self.fc3(self.fc2(_fc1)))
def compiler_fn(no_inductor=False):
def _compiler_fn(gm):
def inner_compiler(gm_, example_inputs_):
if no_inductor:
return gm_
else:
return inductor.compile(gm_, example_inputs_)
gm = torch.compile(gm, fullgraph=True, backend=inner_compiler)
return gm
return _compiler_fn
class MultiProcessInductorTestCase(MultiProcessTestCase, InductorTestCase):
"""
A version of MultiProcessTestCase that derives from the Inductor TestCase
to handle isolation of the inductor cache dir.
"""
class ReplicateTest(MultiProcessInductorTestCase):
# TODO: consider using all devices? The min(2, ...) here would limit the
# test to always run on 2 GPUs only.
@property
def world_size(self) -> int:
return min(2, torch.cuda.device_count())
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
def tearDown(self):
super().tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _test_compile(
self,
*,
use_gpu: bool,
no_sync: bool,
setup_func: Optional[Callable] = None,
no_inductor: bool = False,
no_compile_forward: bool = False,
checkpoint: bool = False,
):
backend = "nccl" if use_gpu else "gloo"
dist.init_process_group(
backend=backend,
rank=self.rank,
world_size=self.world_size,
store=dist.FileStore(self.file_name, self.world_size),
)
if use_gpu:
torch.cuda.set_device(f"cuda:{self.rank}")
device = torch.device("cuda")
else:
device = torch.device("cpu")
torch._dynamo.config.optimize_ddp = (
"python_reducer_without_compiled_forward"
if no_compile_forward
else "python_reducer"
)
torch.manual_seed(123)
model = Net(checkpoint=checkpoint).to(device)
input = torch.randn([1, DIM], device=device)
compiled_replicate_model = replicate(deepcopy(model))
if not no_compile_forward:
compiled_replicate_model = torch.compile(
compiled_replicate_model, fullgraph=False
)
compiled_replicate_optim = torch.optim.Adam(
compiled_replicate_model.parameters()
)
compiled_ddp_model = DDP(deepcopy(model))
if not no_compile_forward:
compiled_ddp_model = torch.compile(compiled_ddp_model, fullgraph=True)
compiled_ddp_optim = torch.optim.Adam(compiled_ddp_model.parameters())
model = replicate(model)
optim = torch.optim.Adam(model.parameters())
if setup_func:
setup_func(model, compiled_replicate_model, compiled_ddp_model)
models = [model, compiled_replicate_model, compiled_ddp_model]
optims = [optim, compiled_replicate_optim, compiled_ddp_optim]
sync_contexts = [
contextlib.nullcontext(),
contextlib.nullcontext(),
compiled_ddp_model.no_sync(),
]
# Run multiple iterations so that we could test no_sync
for i in range(2):
# Setting a different random seed so that if the allreduces are not
# executed correctly, the gradients won't be correct compared to the
# eager DDP.
torch.manual_seed(123 + self.rank + i)
input = torch.randn([1, DIM], device=device)
for model_idx in range(3):
if no_sync and i % 2 == 0:
context = sync_contexts[model_idx]
if model_idx <= 1:
models[model_idx].set_requires_gradient_sync(False)
else:
context = contextlib.nullcontext()
if model_idx <= 1:
models[model_idx].set_requires_gradient_sync(True)
context = contextlib.nullcontext()
with context:
bwd_context = (
contextlib.nullcontext()
if model_idx == 0
else compiled_autograd._enable(compiler_fn(no_inductor))
)
with bwd_context:
loss = models[model_idx](input).sum()
loss.backward()
if not no_sync or i % 2 == 1:
for p1, p2, p3 in zip(
model.parameters(),
compiled_replicate_model.parameters(),
compiled_ddp_model.parameters(),
):
self.assertEqual(p1.grad, p2.grad)
self.assertEqual(p1.grad, p3.grad)
for optim in optims:
optim.step()
optim.zero_grad()
self.assertEqual(
tuple(model.parameters()), tuple(compiled_replicate_model.parameters())
)
self.assertEqual(
tuple(model.parameters()), tuple(compiled_ddp_model.parameters())
)
def test_compile_cpu(self):
# Test the coalesced_op with CPU.
torch._inductor.config._fuse_ddp_communication_passes = [
"fuse_ddp_with_coalesced_op",
"schedule_comm_wait",
]
self._test_compile(use_gpu=False, no_sync=False)
def test_compile_cpu_no_sync(self):
# Test the coalesced_op with CPU.
torch._inductor.config._fuse_ddp_communication_passes = [
"fuse_ddp_with_coalesced_op",
"schedule_comm_wait",
]
self._test_compile(use_gpu=False, no_sync=True)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm_multiprocess
@skip_if_lt_x_gpu(2)
@torch._inductor.config.patch(
reorder_for_locality=False, reorder_for_peak_memory=False
)
def test_compile_gpu(self):
self._test_compile(use_gpu=True, no_sync=False, checkpoint=False)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm_multiprocess
@skip_if_lt_x_gpu(2)
@torch._inductor.config.patch(
reorder_for_locality=False, reorder_for_peak_memory=False
)
def test_compile_gpu_ac(self):
self._test_compile(use_gpu=True, no_sync=False, checkpoint=True)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm_multiprocess
@skip_if_lt_x_gpu(2)
def test_compile_bf16(self):
# Check device capability wrt bf16
device = torch.device("cuda", self.rank % torch.cuda.device_count())
if not sm_is_or_higher_than(device, 8, 0):
self.skipTest("bf16 requires sm >= 8.0")
def setup(model, compiled_replicate_model, compiled_ddp_model) -> None:
model.register_comm_hook(None, ddp_default_hooks.bf16_compress_hook)
compiled_m = compiled_replicate_model._orig_mod
compiled_m.register_comm_hook(None, ddp_default_hooks.bf16_compress_hook)
compiled_ddp_model.register_comm_hook(
None, ddp_default_hooks.bf16_compress_hook
)
self._test_compile(use_gpu=True, no_sync=False, setup_func=setup)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm_multiprocess
@skip_if_lt_x_gpu(2)
def test_compile_fp16(self):
def setup(model, compiled_replicate_model, compiled_ddp_model) -> None:
model.register_comm_hook(None, ddp_default_hooks.fp16_compress_hook)
compiled_m = compiled_replicate_model._orig_mod
compiled_m.register_comm_hook(None, ddp_default_hooks.fp16_compress_hook)
compiled_ddp_model.register_comm_hook(
None, ddp_default_hooks.fp16_compress_hook
)
# TODO: figure out why we need to disable Inductor to avoid test errors.
self._test_compile(
use_gpu=True, no_sync=False, setup_func=setup, no_inductor=True
)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_rocm_multiprocess
@skip_if_lt_x_gpu(2)
def test_compile_backward_only(self):
self._test_compile(use_gpu=True, no_sync=False, no_compile_forward=True)
def _test_bucketing(self, init_process_group=True, loop=1):
if init_process_group:
dist.init_process_group(
backend="gloo",
rank=self.rank,
world_size=self.world_size,
store=dist.FileStore(self.file_name, self.world_size),
)
model = Net()
input = torch.randn([1, DIM])
torch._dynamo.config.optimize_ddp = "python_reducer"
compiled_replicate_model = torch.compile(
replicate(deepcopy(model)), fullgraph=False
)
def bwd(loss):
with compiled_autograd._enable(compiler_fn()):
loss.backward()
for i in range(loop):
loss = compiled_replicate_model(input).sum()
if i != loop - 1:
# Leave the last bwd for the run_and_get_triton_code.
bwd(loss)
code = run_and_get_triton_code(functools.partial(bwd, loss=loss))
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
return code
@torch._inductor.config.patch(
_fuse_ddp_communication_passes=[
"fuse_ddp_with_coalesced_op",
"schedule_comm_wait",
]
)
# todo: This pass mucks things up since Inductor thinks its inference
# and can apply this. Should turn off these passes in compiled autograd
@torch._inductor.config.patch(
reorder_for_locality=False,
reorder_for_peak_memory=False,
# The correctness of this test relies on the pointless permute ops
# in the joint graph does not get eliminated..
pattern_matcher=False,
)
def test_bucketing_coalesced_op(self):
# Gradient is None
code = self._test_bucketing()
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_coalesced_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
# Gradient is None
code = self._test_bucketing(init_process_group=False, loop=2)
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_coalesced_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
@torch._inductor.config.patch(
_fuse_ddp_communication_passes=[
"fuse_ddp_with_concat_op",
"schedule_comm_wait",
]
)
# todo: This pass mucks things up since Inductor thinks its inference
# and can apply this. Should turn off these passes in compiled autograd
@torch._inductor.config.patch(
reorder_for_locality=False,
reorder_for_peak_memory=False,
# The correctness of this test relies on the pointless permute ops
# in the joint graph does not get eliminated..
pattern_matcher=False,
)
def test_bucketing_concat_op(self):
# Gradient is None
code = self._test_bucketing()
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("aten.flatten.using_ints(").check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
# Gradient is not None
code = self._test_bucketing(init_process_group=False, loop=2)
self.assertEqual(counters["inductor"]["ddp_buckets"], 3)
fc = FileCheck()
for i in range(3):
fc.check("aten.flatten.using_ints(").check("cpp_fused_").check(
"torch.ops._c10d_functional.all_reduce_.default("
)
for i in range(3):
fc.check("torch.ops._c10d_functional.wait_tensor.default")
fc.run(code)
class DDP_TP_Test(InductorTestCase):
def setUp(self):
# Hmm, why a specific set_device call for rank 0?
self.rank = 0
self.world_size = 4
torch.cuda.set_device("cuda:0")
store = FakeStore()
dist.init_process_group(
backend="fake",
world_size=self.world_size,
rank=self.rank,
store=store,
)
def tearDown(self):
dist.destroy_process_group()
@unittest.skip(
"Temporarily disabled due to SymInt error: `unhashable type: non-nested SymInt`"
)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skipIfRocm
def test_ddp_tp(self):
ref_model = Net()
compiled_replicate_model = deepcopy(ref_model)
mesh_2d = init_device_mesh(
"cuda", (2, self.world_size // 2), mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
parallelize_plan = {
"fc1": ColwiseParallel(),
"fc2": RowwiseParallel(),
"fc3": ColwiseParallel(),
"fc4": RowwiseParallel(),
}
ref_model = parallelize_module(ref_model, tp_mesh, parallelize_plan)
ref_model = replicate(ref_model, device_mesh=dp_mesh)
compiled_replicate_model = parallelize_module(
compiled_replicate_model, tp_mesh, parallelize_plan
)
compiled_replicate_model = replicate(
compiled_replicate_model, device_mesh=dp_mesh
)
compiled_replicate_model = torch.compile(compiled_replicate_model)
data = torch.randn([1, DIM])
with compiled_autograd._enable(compiler_fn()):
loss = compiled_replicate_model(data).sum()
# TODO: We need "pre-dispatch tracing of backward graph" to make this work:
# https://github.com/pytorch/pytorch/issues/127797#issuecomment-2291695474
with self.assertRaisesRegex(
AssertionError,
"Expected ProxyTensor, got <class 'torch.distributed._tensor.api.DTensor'>",
):
loss.backward()
# ref_loss = ref_model(data).sum()
# ref_loss.backward()
# for p1, p2 in zip(
# ref_model.parameters(), compiled_replicate_model.parameters()
# ):
# self.assertEqual(p1.grad, p2.grad)
if __name__ == "__main__":
run_tests()
|