1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
# Owner(s): ["module: dynamo"]
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
sanitize_gm_for_cache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._guards import TracingContext
from torch._inductor import config as inductor_config
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._subclasses import FakeTensorMode
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.testing._internal.common_cuda import SM80OrLater
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch.testing._internal.two_tensor import TwoTensor
@instantiate_parametrized_tests
class AOTAutogradCacheTests(InductorTestCase):
def setUp(self):
"""
Reset all counters and caches before each unit test
"""
super().setUp()
counters.clear()
self._clear_all_caches()
def _clear_all_caches(self):
"""
Clear every cache, including AOTAutogradCache and FXCache
"""
torch._inductor.codecache.FxGraphCache.clear()
AOTAutogradCache.clear()
self._clear_dynamo_and_codecache()
def _clear_dynamo_and_codecache(self):
"""
Clear unrelated caches, like dynamo and PyCodeCache
"""
torch._dynamo.reset()
torch._inductor.codecache.PyCodeCache.cache_clear(purge=True)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_basic(self):
"""
Verify the interactions between FXGraphCache and AOTAutogradCache.
"""
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@functorch_config.patch({"enable_autograd_cache": True})
def test_aot_runtime_trace_joint(self):
@torch.compile(backend="inductor")
def f(x):
tmp = x.sin()
s0 = tmp.shape[0]
return tmp.expand(s0, s0)
x_a = torch.randn(4, requires_grad=True)
x = TwoTensor(x_a, x_a.clone())
out = f(x)
out.sum().backward()
self._clear_dynamo_and_codecache()
out = f(x)
out.sum().backward()
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@skipIfWindows(
msg="Known issue: Window can't delete loaded modules, so we can't clear module cache."
)
def test_clear_fx_graph_cache(self):
"""
Verify the interactions between FXGraphCache and AOTAutogradCache.
"""
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear FX graph cache: second call should also be a miss
self._clear_dynamo_and_codecache()
torch._inductor.codecache.FxGraphCache.clear()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
# We save again into the cache
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch(
{"enable_autograd_cache": True, "view_replay_for_aliased_outputs": True}
)
def test_view_replay_bypass(self):
"""
Shoud bypass when view replay is turned on
"""
def fn(a):
tmp = a.detach()
a.mul_(2)
return a, tmp
with torch.autograd._force_original_view_tracking(True):
compiled_fn = torch.compile(fn)
out = compiled_fn(torch.rand(2, 3))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_fx_graph_cache_off(self):
"""
Should not use cache if FXGraphCache is not enabled
"""
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
# Clear FX graph cache: second call should also be a miss
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@dynamo_config.patch("compiled_autograd", True)
def test_compiled_autograd_bypass(self):
def fn(a, b):
out = a.cos() + b
loss = out.sum()
ga, gb = torch.autograd.grad(loss, inputs=[a, b])
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(
counters["aot_autograd"]["autograd_cache_miss"], 1
) # from compiled forward
self.assertEqual(
counters["aot_autograd"]["autograd_cache_bypass"], 1
) # from compiled autograd
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@dynamo_config.patch("compiled_autograd", True)
def test_inference_graph_cache_hit_with_compiled_autograd_enabled(self):
def fn(a, b):
out = a.cos() + b
return out.sum()
a = torch.randn(25)
b = torch.randn(25)
compiled_fn = torch.compile(fn, backend="inductor")
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear dynamo and run again. Should be a cache hit.
counters.clear()
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch({"fx_graph_cache": True})
@functorch_config.patch({"enable_autograd_cache": True})
def test_autograd_lazy_backward(self):
"""
Lazily compile the backward, and lazily save to cache
"""
def fn(a, b):
return a.cos() + b
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
# Clear dynamo and run again. Should be a cache miss still, because backward hasn't run
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
# Now let's run the backward
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear dynamo and rerun everything, now there should be a cache hit
self._clear_dynamo_and_codecache()
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_autograd_function(self):
"""
Tests autograd cache hits
"""
def fn(a, b):
return a.sin() + b
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Reset all tensors
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@largeTensorTest("64GB", device=GPU_TYPE)
@parametrize("device", (GPU_TYPE,))
@parametrize("dtype", (torch.float16, torch.bfloat16))
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_autograd_guard_single_entry(self, device, dtype):
"""
Test caching the same graph, but under conditions that introduce guards
for tensor sizes < int32. See test_codecache::TestFxGraphCache::test_cache_load_with_guards_int32_bounds.
This test in particular tests the behavior of a single entry cache. If we ever make AOTAutogradCache
support multiple entries under the same key, this test should be updated.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires CUDA SM80 or later")
def fn(x, y):
return (x + x, y + y)
def expect_miss(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
0,
)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
return res
def expect_hit(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
0,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"],
1,
)
return res
def expect_guard_miss(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
1,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"],
0,
)
return res
compiled_fn = torch.compile(fn, dynamic=True)
a_shape = (5, 6)
b_shape = (7, 8)
a = torch.rand(a_shape, device=device, dtype=dtype)
b = torch.rand(b_shape, device=device, dtype=dtype)
res1 = expect_miss(compiled_fn, a, b)
# Same shape, should cache hit
a2 = a.detach().clone()
b2 = b.detach().clone()
res2 = expect_hit(compiled_fn, a2, b2)
self.assertEqual(res1, res2)
# By changing the shape greatly, despite the same exact input
# graph, inductor should report a guard miss, leading
# to a cache miss on our end.
a_shape = (5, 6)
b_shape = (47000, 47001)
a3 = torch.rand(a_shape, device=device, dtype=dtype)
b3 = torch.rand(b_shape, device=device, dtype=dtype)
expect_guard_miss(compiled_fn, a3, b3)
# Wobble the shape a bit, but not enough
# to trigger a guard miss (since 6, 7 is still less than int32)
# Should result in a cache hit
a_shape = (6, 7)
b_shape = (47000, 47001)
a4 = torch.rand(a_shape, device=device, dtype=dtype)
b4 = torch.rand(b_shape, device=device, dtype=dtype)
expect_hit(compiled_fn, a4, b4)
# Change the shape back to the original,
# FXGraphCache should hit because it stores
# multiple entries
a_shape = (5, 6)
b_shape = (7, 8)
a5 = torch.rand(a_shape, device=device, dtype=dtype)
b5 = torch.rand(b_shape, device=device, dtype=dtype)
expect_hit(compiled_fn, a5, b5)
@largeTensorTest("64GB", device=GPU_TYPE)
@parametrize("device", (GPU_TYPE,))
@parametrize("dtype", (torch.float16, torch.bfloat16))
@parametrize("requires_grad", (True, False))
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_autograd_inductor_guards(self, device, dtype, requires_grad):
"""
Test caching the same graph, but under conditions that introduce guards
for tensor sizes < int32.
See test_codecache::TestFxGraphCache::test_cache_load_with_guards_int32_bounds.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires CUDA SM80 or later")
def fn(x, y):
return (x + x, y + y)
compiled_fn = torch.compile(fn, dynamic=True)
# Iterate over different shapes, varying whether the total
# size is below or above int32. For each combination, we expect
# different guards around whether the symbolic sizes do or do
# not exceed int32.
shapes = (
((5, 6), (7, 8)),
((5, 6), (47000, 47001)),
((47000, 47001), (5, 6)),
)
expected_hits = expected_misses = expected_saves = 0
expected_guard_misses = 0
for a_shape, b_shape in shapes:
a = torch.rand(
a_shape, device=device, dtype=dtype, requires_grad=requires_grad
)
b = torch.rand(
b_shape, device=device, dtype=dtype, requires_grad=requires_grad
)
# AVOID a dynamo reset here. We expect guards to have been
# added that will be violated with the new shape. We should
# see a recompilation (along with a cache miss).
res1 = compiled_fn(a, b)
# A first call should miss in the cache.
expected_misses += 1
self.assertEqual(
counters["aot_autograd"]["autograd_cache_miss"], expected_misses
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
expected_guard_misses,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"], expected_hits
)
# Because dynamic shapes are enabled, we expect backwards to be compiled ahead of time
# So we should see a cache save here
expected_saves += 1
self.assertEqual(
counters["aot_autograd"]["autograd_cache_saved"], expected_saves
)
if requires_grad:
res1[0].sum().backward()
# No extra saves
self.assertEqual(
counters["aot_autograd"]["autograd_cache_saved"], expected_saves
)
a2 = a.detach().clone().requires_grad_(requires_grad)
b2 = b.detach().clone().requires_grad_(requires_grad)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
# Now clear dynamo and we should see a cache hit
# This should populate guards to dynamo's cache, so that a subsequent run with a different
# shape will still trigger a second call to autograd_cache.
self._clear_dynamo_and_codecache()
res2 = compiled_fn(a2, b2)
expected_hits += 1
self.assertEqual(
counters["aot_autograd"]["autograd_cache_miss"], expected_misses
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
expected_guard_misses,
)
# First compile is a regular cache miss, subsequent are guard misses
expected_guard_misses += 1
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"], expected_hits
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_saved"], expected_saves
)
self.assertEqual(res1, res2)
if requires_grad:
res2[0].sum().backward()
self.assertEqual(a.grad, a2.grad)
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_nn_module_with_params_global_constant(self):
class MyMod(torch.nn.Module):
CONSTANT = torch.tensor([[2, 2], [2, 2]])
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.randn([2, 2]))
def forward(self, x):
return x.sin() + self.param + MyMod.CONSTANT
with torch.no_grad():
compiled_fn = torch.compile(MyMod(), backend="inductor", fullgraph=True)
res1 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self._clear_dynamo_and_codecache()
res2 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self.assertEqual(res1, res2)
# Edit the "constant". We'll get a cache hit,
# but it should result in a different result when run
# because MyMod.CONSTANT is an input to the graph
MyMod.CONSTANT = torch.tensor([[3, 3], [3, 3]])
self._clear_dynamo_and_codecache()
res3 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self.assertNotEqual(res1, res3)
self.assertEqual(res1, res3.sub(torch.ones(2, 2)))
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
@property
def device_type(self) -> str:
return "cuda" if torch.cuda.is_available() else "cpu"
def default_config(self):
return AOTConfig(
fw_compiler=None,
bw_compiler=None,
inference_compiler=None,
partition_fn=None,
decompositions={},
num_params_buffers=0,
aot_id=0,
keep_inference_input_mutations=False,
dynamic_shapes=True,
aot_autograd_arg_pos_to_source=None,
is_export=False,
no_tangents=False,
enable_log=False,
)
def _get_dynamo_output(self, fn, *args, **kwargs):
# Reset dynamo between runs
torch._dynamo.reset()
fx_graph = None
example_inputs = None
def compiler(gm, inputs, **kwargs):
nonlocal fx_graph
nonlocal example_inputs
fx_graph = gm
example_inputs = inputs
return gm
g = torch.compile(fn, backend=compiler, fullgraph=True)
result = g(*args, **kwargs)
return (result, fx_graph, example_inputs)
def gen_cache_key(self, f, config, inputs=None):
if inputs is None:
inputs = [torch.ones(3)]
_, fx_g, example_inputs = self._get_dynamo_output(f, *inputs)
shape_env = ShapeEnv()
ctx = TracingContext(FakeTensorMode(shape_env=shape_env))
# Needs a shape env for FxGraphCache.check_can_cache to pass.
# Not needed for actual key calculation.
with torch._guards.tracing(ctx):
return autograd_cache_key(fx_g, example_inputs, config, {})
def test_basic_hash_key(self):
def fn(x):
return x.sin().cos()
config = self.default_config()
# Check hash is stable on multiple runs
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config)
self.assertEqual(c1, c2)
def test_identical_graphs_and_configs(self):
def fn(x):
return x.sin().cos()
def fn2(x):
y = x.sin()
z = y.cos()
return z
# Make the id different, but otherwise identical
config = self.default_config()
config2 = self.default_config()
config2.aot_id = 1
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config2)
self.assertEqual(c1, c2)
def test_different_graphs(self):
def fn(x):
return x.cos().sin()
def fn2(x):
return x.sin().cos()
config = self.default_config()
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn2, config)
self.assertNotEqual(c1, c2)
def test_different_configs(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
config2 = self.default_config()
config2.dynamic_shapes = False
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config2)
self.assertNotEqual(c1, c2)
def test_different_inputs(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
c1 = self.gen_cache_key(fn, config, inputs=[torch.ones(3)])
c2 = self.gen_cache_key(fn, config, inputs=[torch.ones(2)])
self.assertNotEqual(c1, c2)
def test_different_global_configs(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config)
self.assertEqual(c1, c2)
c1 = self.gen_cache_key(fn, config)
# Change functorch config
with functorch_config.patch(
{"debug_assert": not functorch_config.debug_assert}
):
c2 = self.gen_cache_key(fn, config)
self.assertNotEqual(c1, c2)
c1 = self.gen_cache_key(fn, config)
# Change inductor config
with inductor_config.patch({"debug": not inductor_config.debug}):
c2 = self.gen_cache_key(fn, config)
self.assertNotEqual(c1, c2)
c1 = self.gen_cache_key(fn, config)
# Change torch grad enabled
with torch.no_grad():
c2 = self.gen_cache_key(fn, config)
self.assertNotEqual(c1, c2)
def test_incompatible_function(self):
@torch._dynamo.allow_in_graph
class AllowInGraphFunc(torch.autograd.Function):
@staticmethod
def forward(_, x):
torch._dynamo.graph_break()
return x.sin()
def fn(x):
return AllowInGraphFunc.apply(x)
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
def test_private_namespace(self):
# TODO: anyone who monkeypatches a **public** function into torch namespace with @allow_in_graph
# could still break our sanity check and cache something bad. But that's an edge case we'll take the risk on.
# Monkeypatch some random private function into torch, see that it fails
@torch._dynamo.allow_in_graph
def my_private_fun(x):
return x.sin()
with patch("torch._my_priv", new=my_private_fun, create=True):
def fn(x):
return torch._my_priv(x)
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
@torch._inductor.config.patch({"freezing": True})
def test_freezing(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
def test_private_builtin(self):
# _foreach_add is a private torch function, but
# it's also a builtin_function_or_method, so it should be allowed to be cached
# since dynamo allows it in the graph
def fn(x, b):
y = (x, x)
return torch._foreach_add(y, b)
config = self.default_config()
r1 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 1])
r2 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 2])
self.assertNotEqual(r1, r2)
def test_nn_module_with_params(self):
class MyMod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.seq = torch.nn.Parameter(torch.ones((3, 3)))
def forward(self, x):
return self.seq + x
config = self.default_config()
# Different inputs and parameters, but all the same size
c1 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))])
c2 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))])
self.assertEqual(c1, c2)
def test_normal_torch_function(self):
@torch._dynamo.allow_in_graph
def fn(x):
y = torch.sin(x)
z = torch.cos(x)
w = y + z
w.abs()
return w
config = self.default_config()
self.gen_cache_key(fn, config)
def test_safe_torchfunction(self):
def fn(x):
a = x.size()
b = torch.Size([3, 3])
c = a == b
x = torch.sym_int(9)
y = torch.sym_float(x)
z = torch.sym_int(torch.sym_sqrt(y))
result = torch.sym_sum([x, y, z])
return (c, result)
config = self.default_config()
self.gen_cache_key(fn, config, inputs=[torch.ones((3, 3))])
def test_sanitize_gm_for_cache(self):
def fn(x):
y = torch.sin(x)
z = torch.cos(x)
w = y + z
w.abs()
return w
_, fx_g, example_inputs = self._get_dynamo_output(fn, torch.ones(3))
ctx = TracingContext(FakeTensorMode(shape_env=ShapeEnv()))
with torch._guards.tracing(ctx):
fx_g.meta = {"foo": "bar"}
fx_g.compile_subgraph_reason = "Blah"
config = self.default_config()
with sanitize_gm_for_cache(fx_g):
c1 = autograd_cache_key(fx_g, example_inputs, config, {})
c3 = autograd_cache_key(fx_g, example_inputs, config, {})
fx_g.meta = {"foo": "baz"}
fx_g.compile_subgraph_reason = None
with sanitize_gm_for_cache(fx_g):
c2 = autograd_cache_key(fx_g, example_inputs, config, {})
c4 = autograd_cache_key(fx_g, example_inputs, config, {})
self.assertEqual(c1, c2)
self.assertNotEqual(c3, c4)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()
|