1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
# Owner(s): ["oncall: speech_infra"]
import copy
import torch
import torch.nn as nn
from torch.ao.quantization.experimental.adaround_optimization import (
AdaptiveRoundingOptimizer,
)
from torch.nn import functional as F
from torch.quantization.observer import MinMaxObserver
from torch.testing._internal.common_quantization import QuantizationTestCase
def forward_wrapper(fetcher):
def forward(module, input, output):
fetcher.append(input[0].detach())
fetcher.append(output.detach())
return forward
class TestAdaround(QuantizationTestCase):
def feedforawrd_callback(
self,
model,
data,
) -> None:
model(data)
def feedforawrd_callback_with_wrapper(self, model, data, wrapper) -> None:
wrapper(model, data)
def run_adaround(self, model, img_data, wrapper=None):
adaround_optimizer = AdaptiveRoundingOptimizer(
model,
self.feedforawrd_callback
if wrapper is None
else self.feedforawrd_callback_with_wrapper,
forward_wrapper,
img_data,
max_iter=100,
batch_size=10,
feed_forward_wrapper=wrapper,
)
adarounded_model = adaround_optimizer.run_adaround()
return adarounded_model
def get_fake_quant(self, model):
hard_fake_quant_model = copy.deepcopy(model)
for _, module in hard_fake_quant_model.named_modules():
if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
weight_observer = MinMaxObserver(
quant_min=-128,
quant_max=127,
dtype=torch.qint8,
qscheme=torch.per_tensor_symmetric,
)
weight_observer(module.weight)
scale, zero_point = weight_observer.calculate_qparams()
fake_quant_module = torch.fake_quantize_per_tensor_affine(
module.weight,
scale=scale,
zero_point=zero_point,
quant_min=-128,
quant_max=127,
)
module.weight.data.copy_(fake_quant_module)
return hard_fake_quant_model
def get_feed_forward_wrapper(self):
class FeedForwardWrapper(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, model, sample):
return model(sample)
wrapper_module = FeedForwardWrapper()
return wrapper_module
def test_linear_chain(self):
class LinearChain(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = nn.Linear(3, 4)
self.linear2 = nn.Linear(4, 5)
self.linear3 = nn.Linear(5, 6)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
float_model = LinearChain()
img_data = [torch.rand(10, 3, dtype=torch.float) for _ in range(50)]
adarounded_model = self.run_adaround(
float_model, img_data, self.get_feed_forward_wrapper()
)
fq_model = self.get_fake_quant(float_model)
rand_input = torch.rand(10, 3)
with torch.no_grad():
ada_out = adarounded_model(rand_input)
fq_out = fq_model(rand_input)
float_out = float_model(rand_input)
ada_loss = F.mse_loss(ada_out, float_out)
fq_loss = F.mse_loss(fq_out, float_out)
self.assertTrue(ada_loss.item() < fq_loss.item())
def test_conv_chain(self):
class ConvChain(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv2d1 = nn.Conv2d(3, 4, 5, 5)
self.conv2d2 = nn.Conv2d(4, 5, 5, 5)
self.conv2d3 = nn.Conv2d(5, 6, 5, 5)
def forward(self, x):
x = self.conv2d1(x)
x = self.conv2d2(x)
x = self.conv2d3(x)
return x
float_model = ConvChain()
img_data = [torch.rand(10, 3, 125, 125, dtype=torch.float) for _ in range(50)]
adarounded_model = self.run_adaround(float_model, img_data)
fq_model = self.get_fake_quant(float_model)
rand_input = torch.rand(10, 3, 256, 256)
with torch.no_grad():
ada_out = adarounded_model(rand_input)
fq_out = fq_model(rand_input)
float_out = float_model(rand_input)
ada_loss = F.mse_loss(ada_out, float_out)
fq_loss = F.mse_loss(fq_out, float_out)
self.assertTrue(ada_loss.item() < fq_loss.item())
|