1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
# Owner(s): ["module: decompositions"]
from functools import partial
from itertools import product
import unittest
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import (parametrize, run_tests, TestCase, TEST_SCIPY,
set_default_dtype)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCUDA,
dtypes,
OpDTypes,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
)
from torch.testing._internal.common_device_type import (
ops,
)
from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs, log_input
import torch._prims as prims
from torch._prims_common import CUDARngStateHelper
from torch._prims.executor import make_traced
import torch._refs as refs
if TEST_SCIPY:
import scipy.special
NVPRIM_ATEN_FALLBACK_WARNING = "fallback to aten executor"
GET_ISOLATED_GRAPHMODULE_ERROR = "get_isolated_graphmodule failed on decomposition"
class TestPrims(TestCase):
@onlyCUDA
@dtypes(torch.float32)
def test_broadcast_in_dim(self, device, dtype):
def _wrapper(a, b, broadcast_dimensions):
return prims.broadcast_in_dim(a, b.shape, broadcast_dimensions)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
# Same shape
shape = (5, 5)
a = make_arg(shape)
b = make_arg(shape, low=0.0, high=0.0)
result = fn(a, b, (0, 1))
self.assertEqual(result.shape, a.shape)
self.assertTrue(result.is_contiguous)
self.assertEqual(a, result)
# Error input: reordering dims
with self.assertRaises(Exception):
result = fn(a, b, (1, 0))
# Adding outermost dimensions
a = make_arg((5, 5))
b = make_arg((3, 3, 5, 5), low=0.0, high=0.0)
result = fn(a, b, (2, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.broadcast_to(b.shape), result)
# Expands
a = make_arg((1, 5, 1))
b = make_arg((3, 5, 7), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 2))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.expand_as(result), result)
# Unsqueezes
a = make_arg((1, 2, 3))
b = make_arg((1, 2, 1, 3), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.unsqueeze(2), result)
@onlyCUDA
@dtypes(torch.float32)
def test_broadcast_in_dim_sum(self, device, dtype):
def _wrapper(a):
a_sum = prims.sum(a, [0, 1])
a_bc = prims.broadcast_in_dim(a_sum, [], [])
return a_bc
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@dtypes(torch.float64, torch.long)
def test_cbrt_prim(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
batches = [(), (1,), (2,), (0, 1), (1, 1), (2, 2)]
shapes = [(), (0,), (1,), (5,)]
# Sets the default dtype to NumPy's default dtype of double
with set_default_dtype(torch.double):
# Tested here, as this OP is not currently exposed or tested in ATen
for b, s in product(batches, shapes):
x = make_arg(b + s)
y = prims.cbrt(x)
x_np = x.cpu().numpy()
y_np = scipy.special.cbrt(x_np)
self.assertEqual(y, y_np, exact_device=False)
@dtypes(torch.float32)
def test_collapse(self, device, dtype):
t = torch.rand(2, 2, 2)
dim_ranges = [(0, 0), (0, 1), (1, 2), (0, 2)]
expected_shapes = [(2, 2, 2), (4, 2), (2, 4), (8,)]
for (start, end), shape in zip(dim_ranges, expected_shapes):
expect = t.reshape(shape)
copy = prims.collapse(t, start, end)
self.assertEqual(copy, expect)
self.assertFalse(copy._is_view())
view = prims.collapse_view(t, start, end)
self.assertEqual(view, expect)
self.assertTrue(view._is_view())
t_discontig = t.transpose(0, 1)
with self.assertRaises(ValueError, msg="no such view exists"):
view = prims.collapse_view(t_discontig, 0, 2)
copy = prims.collapse(t_discontig, 0, 1)
self.assertEqual(copy, t_discontig.reshape(4, 2))
error_dims = [(-1, 1), (0, 3), (1, -1)]
for start, end in error_dims:
for fn in [prims.collapse, prims.collapse_view]:
with self.assertRaises(AssertionError):
fn(t, start, end)
def test_aten_overload_to_prims(self, device):
# This test is to ensure that the torch.ops.aten calls are replaced with refs
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
a = torch.randn(3, 3, device=device)
def func(a):
return torch.ops.aten.sigmoid.default(torch.ops.aten.digamma.default(a))
with TorchRefsMode():
gm = make_fx(func)(a)
# Check that all call_function nodes are prims
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
all_prims_namespace = all(
node.target.name().startswith("prims") for node in call_function_nodes
)
self.assertTrue(all_prims_namespace)
@onlyCUDA
@dtypes(torch.float32)
@parametrize("correction", [0, 1])
def test_var(self, device, dtype, correction):
def _wrapper(a):
return prims.var(a, [0, 1], correction=correction)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@dtypes(torch.float32)
def test_memory_format_strides(self, device, dtype):
shapes = (
(),
(0,),
(1,),
(5),
(1, 0),
(1, 1),
(3, 7),
(3, 0, 2),
(1, 1, 2),
(4, 1, 1),
(7, 8, 9),
)
channels_last_shapes = (
(0, 0, 0, 0),
(1, 0, 3, 0),
(0, 2, 3, 5),
(2, 2, 2, 0),
(5, 4, 3, 2),
(8, 8, 7, 2),
(9, 1, 3, 1),
(4, 5, 8, 7)
)
channels_last_3d_shapes = (
(0, 8, 7, 9, 2),
(5, 0, 7, 9, 2),
(5, 0, 7, 9, 0),
(5, 8, 7, 9, 2),
(5, 1, 7, 9, 2),
(5, 1, 7, 9, 1),
)
pairs = (
(shapes, torch.contiguous_format),
(channels_last_shapes, torch.contiguous_format),
(channels_last_3d_shapes, torch.contiguous_format),
(channels_last_shapes, torch.channels_last),
(channels_last_3d_shapes, torch.channels_last_3d),
)
for shapes, memory_format in pairs:
for shape in shapes:
# tests empty
expected = torch.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
actual = refs.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests clone
a = torch.testing.make_tensor(shape, device=device, dtype=dtype)
expected = torch.clone(a, memory_format=memory_format)
actual = torch.clone(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests contiguous
a = torch.testing.make_tensor(shape, device=device, dtype=dtype, noncontiguous=True)
expected = a.contiguous(memory_format=memory_format)
actual = refs.contiguous(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
@dtypes(torch.float32)
def test_reshape_view_method(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
a = make_arg((5, 5))
new_shape = 1, 5, 1, 5
result_eager = a.reshape(*new_shape)
result_refs = refs.reshape(a, *new_shape)
self.assertEqual(result_eager, result_refs)
result_eager = a.view(*new_shape)
result_refs = refs.view(a, *new_shape)
self.assertEqual(result_eager, result_refs)
@onlyCUDA
@dtypes(torch.float32)
def test_philox_rand(self, device, dtype):
sizes = (1000, 1000000) # offsets of 4 and 8
repeats = 2 # Checks multiple rand calls results with multiple philox_rand calls
for size in sizes:
torch.cuda.manual_seed(123)
references = []
results = []
rng_states = []
for _ in range(repeats):
rng_states.append(CUDARngStateHelper.get_torch_state_as_tuple())
references.append(torch.rand(size, device=device, dtype=dtype))
torch.cuda.manual_seed(123)
for idx in range(repeats):
seed, offset = rng_states[idx]
result, _ = torch.ops.rngprims.philox_rand((size,),
seed=seed,
offset=offset,
stride=None,
device=device,
dtype=dtype)
results.append(result)
for a, b in zip(references, results):
self.assertEqual(a, b)
@dtypes(torch.float32)
def test_functional_rng_wrappers(self, device, dtype):
torch.manual_seed(123)
ref1 = torch.rand(10, device=device, dtype=dtype)
ref2 = torch.rand(10, device=device, dtype=dtype)
torch.manual_seed(123)
rng_state1, res1 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype)
rng_state2, res2 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype)
res3 = torch._prims.rng_prims.run_with_rng_state(rng_state1, torch.rand, 10, device=device, dtype=dtype)
res4 = torch._prims.rng_prims.run_with_rng_state(rng_state2, torch.rand, 10, device=device, dtype=dtype)
self.assertEqual(ref1, res1)
self.assertEqual(ref2, res2)
self.assertEqual(ref1, res3)
self.assertEqual(ref2, res4)
class TestPrimsBasic(TestCase):
def test_torch_ops(self):
r = make_tensor((2,), device='cpu', dtype=torch.float)
self.assertEqual(torch.ops.prims.sin(r), torch.sin(r))
r = LoggingTensor(r)
with capture_logs() as logs:
log_input("input", r)
prims.sin(r)
self.assertExpectedInline('\n'.join(logs), """\
$0: f32[2] = input('input')
$1: f32[2] = torch._ops.prims.sin.default($0)""")
def test_mul_complex(self):
prims.mul(torch.randn(2), 1 + 1j)
def test_clone_complex(self):
with torch._dispatch.python.enable_python_dispatcher():
x = torch.randn(4, dtype=torch.complex64, device='meta').conj()
out = x + 1
def test_check_deprecation_warning(self):
with self.assertWarnsRegex(FutureWarning, 'will be removed in the future'):
torch._prims_common.check(True, lambda: 'message')
instantiate_device_type_tests(TestPrims, globals())
class TestRefs(TestCase):
@dtypes(torch.float32)
def test_constant_pad_nd_memory_format(self, device, dtype):
# Test memory format is preserved in unambiguous cases
for mf, ndim in (
(torch.channels_last, 4),
(torch.contiguous_format, 4),
(torch.channels_last_3d, 5),
(torch.contiguous_format, 5),
):
a = torch.zeros([2] * ndim).to(memory_format=mf)
res = refs.constant_pad_nd(a, pad=[1] * (2 * ndim))
self.assertTrue(res.is_contiguous(memory_format=mf))
# Ambiguous cases
# is_channels_last_ and is_contiguous_, results in channels_last output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 1, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous(memory_format=torch.channels_last))
# is_channels_last_contiguous_ but not is_channels_last_, results in
# contiguous output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 4, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous())
def test_unbind(self):
# If unbind returns empty tuple, it breaks some assumptions in some backward tests in test_ops.py.
# So can't put this test into common_methods_invocations.py.
a = torch.rand([3, 0, 4])
actual = refs.unbind(a, 1)
expect = torch.unbind(a, 1)
self.assertEqual(actual, expect)
def test_logspace_with_complex_input(self):
actual = refs.logspace(2, 10 + 5j, steps=5)
expect = torch.logspace(2, 10 + 5j, steps=5)
self.assertEqual(actual, expect)
def test_linspace_with_complex_input(self):
actual = refs.linspace(2, 10 + 5j, steps=5)
expect = torch.linspace(2, 10 + 5j, steps=5)
self.assertEqual(actual, expect)
# From https://github.com/pytorch/pytorch/issues/109558
def test_infinite_loop_from_py_dispatcher(self):
# enables prim decomps
with torch._dispatch.python.enable_python_dispatcher():
x = torch.ones(4)
y = x.to(device="meta")
def test_inferred_tags(self):
self.assertEqual(torch.ops.prims.normal.default.tags, (torch.Tag.nondeterministic_seeded, torch.Tag.pt2_compliant_tag))
instantiate_device_type_tests(TestRefs, globals())
class TestDecomp(TestCase):
@ops([op for op in op_db if op.supports_varargs], dtypes=OpDTypes.any_one)
def test_decomposition_method_vararg(self, device, dtype, op):
# some ops have vararg variants for the methods. this tests it.
# we don't have tests for varargs in OpInfo, so we need to
# improvise this a bit.
# The rule for general functions (the special cases being e.g. tensor
# creation functions taking shapes) is that things can be vararg
# if the method has only one argument of sequence type.
# e.g. permute can be called on a 3d tensor t as t.permute(0, 2, 1)
# as well as t.permute([0, 2, 1])
# when the signature in native_functions.yaml
# shows arguments Tensor self, IntList dims
# we might need to adjust things for the factory functions or
# have them do their own test
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
# filter out empty tuple as that cannot be the varargs
sample_inputs = (si for si in op.sample_inputs(device, dtype, requires_grad=False)
if (si.args[-1] if si.args else si.input))
# just run one test, we assume there is a suitable one in the tests
sample_input = next(sample_inputs)
all_args = (sample_input.input,) + sample_input.args
# in general, the methods take varargs and not (always?) the function
# variants, the exception to this rule are the factory functions
if op.is_factory_function:
fn = op.op
else:
fn = op.method_variant
with TorchRefsMode():
gm = make_fx(fn)(*all_args[:-1], *all_args[-1])
# in case we add random factory functions
torch.manual_seed(1)
res = gm(*all_args[:-1], *all_args[-1])
torch.manual_seed(1)
expected = fn(*all_args[:-1], *all_args[-1])
self.assertEqual(res, expected)
instantiate_device_type_tests(TestDecomp, globals())
if __name__ == "__main__":
run_tests()
|