1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
|
# ${generated_comment}
# mypy: disable-error-code="type-arg"
# mypy: allow-untyped-defs
import builtins
from enum import Enum, IntEnum
from pathlib import Path
from typing import (
Any,
AnyStr,
BinaryIO,
Callable,
ContextManager,
Dict,
Generic,
Iterable,
Iterator,
List,
Literal,
NamedTuple,
Optional,
Protocol,
Sequence,
Set,
SupportsIndex,
Tuple,
Type as _Type,
TypeVar,
Union,
overload,
runtime_checkable,
)
from typing_extensions import ParamSpec, Self
import numpy
import torch
from torch import SymInt, Tensor, inf
from torch._prims_common import DeviceLikeType
from torch.autograd.graph import Node as _Node
from torch.fx.node import Node as FxNode
from torch.package import PackageExporter
from torch.storage import TypedStorage, UntypedStorage
from torch.types import (
Device,
Number,
Storage,
IntLikeType,
_bool,
_bytes,
_complex,
_device,
_dispatchkey,
_dtype,
_float,
_int,
_layout,
_qscheme,
_size,
_str,
_symsize,
)
from torch.utils._python_dispatch import TorchDispatchMode
from . import (
_aoti,
_export,
_cpu,
_dynamo,
_functorch,
_lazy,
_lazy_ts_backend,
_nn,
_onnx,
_VariableFunctions,
_verbose,
)
# This module is defined in torch/csrc/Module.cpp
K = TypeVar("K")
T = TypeVar("T")
S = TypeVar("S", bound="torch.Tensor")
P = ParamSpec("P")
ReturnVal = TypeVar("ReturnVal", covariant=True) # return value (always covariant)
_T_co = TypeVar("_T_co", covariant=True)
@runtime_checkable
class _NestedSequence(Protocol[_T_co]):
"""A protocol for representing nested sequences.
References::
`numpy._typing._NestedSequence`
<https://github.com/numpy/numpy/blob/main/numpy/_typing/_nested_sequence.py>
"""
def __len__(self, /) -> builtins.int: ...
def __getitem__(self, index: builtins.int, /) -> _T_co | _NestedSequence[_T_co]: ...
def __contains__(self, x: builtins.object, /) -> builtins.bool: ...
def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ...
def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ...
def count(self, value: Any, /) -> builtins.int: ...
def index(self, value: Any, /) -> builtins.int: ...
# Defined in torch/csrc/Device.cpp
class device:
type: str # THPDevice_type
index: _int # THPDevice_index
def __get__(self, instance, owner=None) -> device: ...
# THPDevice_pynew
@overload
def __init__(self, device: DeviceLikeType) -> None: ...
@overload
def __init__(self, type: str, index: _int) -> None: ...
# Uncomment if we ever make torch.device a decorator
# def __call__(self, func: T) -> T: ...
def __enter__(self) -> device: ...
def __exit__(self, exc_type, exc_val, exc_tb) -> None: ...
def __reduce__(self) -> Tuple[Any, ...]: ... # THPDevice_reduce
# Defined in torch/csrc/Stream.cpp
class Stream:
stream_id: _int # Stream id
device_index: _int
device_type: _int
device: _device # The device of the stream
@overload
def __new__(self, device: Optional[DeviceLikeType] = None, *, priority: _int = 0) -> Stream: ...
@overload
def __new__(self, stream_id: _int, device_index: _int, device_type: _int, *, priority: _int = 0) -> Stream: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
def wait_event(self, event: Event) -> None: ...
def wait_stream(self, other: Stream) -> None: ...
def record_event(self, event: Optional[Event] = None) -> Event: ...
def __hash__(self) -> _int: ...
def __repr__(self) -> str: ...
def __eq__(self, other: object) -> _bool: ...
# Defined in torch/csrc/Event.cpp
class Event:
device: _device # The device of the Event
event_id: _int # The raw event created by device backend
def __new__(self,
device: Optional[DeviceLikeType] = None,
*,
enable_timing: _bool = False,
blocking: _bool = False,
interprocess: _bool = False) -> Event: ...
@classmethod
def from_ipc_handle(self, device: _device, ipc_handle: bytes) -> Event: ...
def record(self, stream: Optional[Stream] = None) -> None: ...
def wait(self, stream: Optional[Stream] = None) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: Event) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
def __repr__(self) -> str: ...
# Defined in torch/csrc/Size.cpp
class Size(Tuple[_int, ...]):
# TODO: __reduce__
@overload # type: ignore[override]
def __getitem__(self: Size, key: _int) -> _int: ...
@overload
def __getitem__(self: Size, key: slice) -> Size: ...
def numel(self: Size) -> _int: ...
# Defined in torch/csrc/Dtype.cpp
class dtype:
# TODO: __reduce__
is_floating_point: _bool
is_complex: _bool
is_signed: _bool
itemsize: _int
def to_real(self) -> dtype: ...
def to_complex(self) -> dtype: ...
# Defined in torch/csrc/TypeInfo.cpp
class iinfo:
bits: _int
min: _int
max: _int
dtype: str
def __init__(self, dtype: _dtype) -> None: ...
class finfo:
bits: _int
min: _float
max: _float
eps: _float
tiny: _float
smallest_normal: _float
resolution: _float
dtype: str
@overload
def __init__(self, dtype: _dtype) -> None: ...
@overload
def __init__(self) -> None: ...
${dtype_class_hints}
# Defined in torch/csrc/Layout.cpp
class layout: ...
# Defined in torch/csrc/utils/disable_torch_function.cpp
def DisableTorchFunction(): ...
def DisableTorchFunctionSubclass(): ...
# Defined in torch/csrc/utils/tensor_layouts.cpp
strided: layout = ...
sparse_coo: layout = ...
sparse_csr: layout = ...
sparse_csc: layout = ...
sparse_bsr: layout = ...
sparse_bsc: layout = ...
_mkldnn: layout = ...
jagged: layout = ...
# Defined in torch/csrc/MemoryFormat.cpp
class memory_format: ...
# Defined in torch/csrc/utils/tensor_memoryformats.cpp
contiguous_format: memory_format = ...
channels_last: memory_format = ...
channels_last_3d: memory_format = ...
preserve_format: memory_format = ...
# Defined in torch/csrc/QScheme.cpp
class qscheme: ...
# Defined in torch/csrc/utils/tensor_qschemes.h
per_tensor_affine: qscheme = ...
per_channel_affine: qscheme = ...
per_tensor_symmetric: qscheme = ...
per_channel_symmetric: qscheme = ...
per_channel_affine_float_qparams: qscheme = ...
# Defined in torch/csrc/autograd/python_function.cpp
class _FunctionBase:
saved_tensors: Tuple[Tensor]
_raw_saved_tensors: Tuple[Any]
next_functions: Tuple[Tuple[Any, _int], ...]
needs_input_grad: Tuple[_bool]
metadata: dict
_materialize_non_diff_grads: _bool
# skip adding type hints for the fields that have wrappers defined
# in torch/autograd/function.py
# Defined in torch/csrc/autograd/python_legacy_variable.cpp
class _LegacyVariableBase(Tensor): # inherits from Tensor to appease mypy
def __init__(
self,
data: Optional[Tensor] = ...,
requires_grad: Optional[_bool] = ...,
volatile: Optional[_bool] = ...,
_grad_fn: Optional[_FunctionBase] = ...,
) -> None: ...
# Defined in torch/csrc/jit/python/init.cpp
class IODescriptor: ...
class JITException: ...
class Future(Generic[T]):
def __init__(self, devices: List[device]) -> None: ...
def done(self) -> _bool: ...
def value(self) -> T: ...
def wait(self) -> T: ...
def add_done_callback(self, callback: Callable) -> None: ...
def then(self, callback: Callable) -> Future[T]: ...
def set_result(self, result: T) -> None: ...
def _set_unwrap_func(self, callback: Callable) -> None: ...
class _Await:
def __init__(self) -> None: ...
def fn(self) -> Callable: ...
def args(self) -> Tuple[Any, ...]: ...
def is_nowait(self) -> _bool: ...
def _jit_set_num_profiled_runs(num: _size) -> _size: ...
# Defined in torch/csrc/jit/passes/mobile_optimizer_type.h
class _MobileOptimizerType: ...
CONV_BN_FUSION: _MobileOptimizerType
INSERT_FOLD_PREPACK_OPS: _MobileOptimizerType
REMOVE_DROPOUT: _MobileOptimizerType
FUSE_ADD_RELU: _MobileOptimizerType
HOIST_CONV_PACKED_PARAMS: _MobileOptimizerType
VULKAN_AUTOMATIC_GPU_TRANSFER: _MobileOptimizerType
def fork(*args: Any, **kwargs: Any) -> Future: ...
def wait(fut: Future) -> Any: ...
def _awaitable(*args: Any, **kwargs: Any) -> _Await: ...
def _awaitable_wait(aw: _Await) -> Any: ...
def _awaitable_nowait(x: Any) -> _Await: ...
def _collect_all(futures: List[Future]) -> Future: ...
def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...
def unify_type_list(types: List[JitType]) -> JitType: ...
def _freeze_module(
module: ScriptModule,
preserved_attrs: List[str] = [],
freeze_interfaces: _bool = True,
preserveParameters: _bool = True,
) -> ScriptModule: ...
def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
def _jit_pass_optimize_for_inference(
module: torch.jit.ScriptModule,
other_methods: List[str] = [],
) -> None: ...
def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ...
def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ...
def _jit_pass_concat_frozen_linear(graph: Graph): ...
def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ...
def _jit_pass_transpose_frozen_linear(graph: Graph): ...
def _jit_pass_remove_dropout(module: torch.jit.ScriptModule): ...
def _is_tracing() -> _bool: ...
def _jit_init() -> _bool: ...
def _jit_flatten(arg: Any) -> Tuple[List[Tensor], IODescriptor]: ...
def _jit_unflatten(vars: List[Tensor], desc: IODescriptor) -> Any: ...
def _jit_get_operation(op_name: str) -> Tuple[Callable, List[str]]: ...
def _get_operation_overload(
op_name: str,
op_overload_name: str,
) -> Tuple[Callable, Callable, List[Any]]: ...
def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ...
def _jit_pass_optimize_for_mobile(
module: torch.jit.ScriptModule,
optimization_blocklist: Set[_MobileOptimizerType],
preserved_methods: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _clone_module_with_class(
module: torch.jit.ScriptModule,
ignored_methods: List[AnyStr],
ignored_attributes: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_vulkan_optimize_for_mobile(
module: torch.jit.ScriptModule,
optimization_blocklist: Set[_MobileOptimizerType],
preserved_methods: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_metal_optimize_for_mobile(
module: torch.jit.ScriptModule,
preserved_methods: List[AnyStr],
) -> torch.jit.ScriptModule: ...
def _jit_pass_inline(Graph) -> None: ...
def _jit_pass_constant_propagation(Graph) -> None: ...
def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ...
def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ...
def _jit_erase_non_input_shape_information(Graph) -> None: ...
def _jit_get_schemas_for_operator(name: str) -> List[FunctionSchema]: ...
def _jit_get_all_schemas() -> List[FunctionSchema]: ...
def _jit_check_alias_annotation(
g: Graph,
args: Tuple[Any, ...],
unqualified_op_name: str,
): ...
def _jit_can_fuse_on_cpu() -> _bool: ...
def _jit_can_fuse_on_gpu() -> _bool: ...
def _jit_can_fuse_on_cpu_legacy() -> _bool: ...
def _debug_get_fusion_group_inlining() -> _bool: ...
def _debug_set_fusion_group_inlining(enable: _bool): ...
def _jit_texpr_fuser_enabled() -> _bool: ...
def _jit_nvfuser_enabled() -> _bool: ...
def _jit_llga_enabled() -> _bool: ...
def _jit_set_llga_enabled(enable: _bool): ...
def _llvm_enabled() -> _bool: ...
def _jit_override_can_fuse_on_cpu(override: _bool): ...
def _jit_override_can_fuse_on_gpu(override: _bool): ...
def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ...
def _jit_set_symbolic_shapes_test_mode(override: _bool): ...
def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ...
def _jit_set_texpr_fuser_enabled(enable: _bool): ...
def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ...
def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ...
def _jit_cat_wo_conditionals(optimize_cat: _bool): ...
def _jit_opt_conditionals(opt_conds: _bool): ...
def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ...
def _jit_pass_erase_shape_information(graph: Graph): ...
def _jit_pass_fold_convbn(module: torch.jit.ScriptModule): ...
def _jit_pass_insert_observers(
module: torch.jit.ScriptModule,
method_name: str,
qconfig_dict: Dict[str, Any],
inplace: _bool,
quant_type: _int,
): ...
def _jit_pass_insert_quant_dequant(
module: torch.jit.ScriptModule,
method_name: str,
inplace: _bool,
debug: _bool,
quant_type: _int,
): ...
def _jit_pass_insert_quant_dequant_for_ondevice_ptq(
module: torch.jit.ScriptModule,
method_name: str,
inplace: _bool,
debug: _bool,
quant_type: _int,
): ...
def _jit_pass_quant_finalize(
module: torch.jit.ScriptModule,
quant_type: _int,
preserved_attrs: Sequence[str],
): ...
def _jit_pass_quant_finalize_for_ondevice_ptq(
module: torch.jit.ScriptModule,
quant_type: _int,
method_name: str,
): ...
def _jit_pass_insert_observer_method_for_ondevice_ptq(
module: torch.jit.ScriptModule,
method_name: str,
qconfig_dict: Dict[str, Any],
inplace: _bool,
quant_type: _int,
): ...
def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ...
def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ...
def _jit_set_fusion_strategy(
strategy: List[Tuple[str, _int]],
) -> List[Tuple[str, _int]]: ...
def _jit_try_infer_type(obj: Any) -> InferredType: ...
def _jit_get_trigger_value(trigger_name: str) -> _int: ...
# Defined in torch/csrc/jit/python/script_init.cpp
ResolutionCallback = Callable[[str], Callable[..., Any]]
# Defined in torch/csrc/jit/python/script_init.cpp
# and torch/csrc/jit/python/init.cpp
def _maybe_call_torch_function_for_op_packet(
op_overload_packet: Any,
args: Any,
kwargs: Any,
) -> Any: ...
def _check_schema_allow_fake_script_object(
schema: FunctionSchema,
args: Any,
kwargs: Any,
) -> _bool: ...
def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ...
def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ...
def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ...
def _jit_assert_is_instance(obj: Any, type: JitType): ...
def _jit_clear_class_registry() -> None: ...
def _jit_set_emit_hooks(
ModuleHook: Optional[Callable],
FunctionHook: Optional[Callable],
) -> None: ...
def _jit_get_emit_hooks() -> Tuple[Callable, Callable]: ...
def _load_for_lite_interpreter(
filename: Union[str, Path],
map_location: Optional[DeviceLikeType],
): ...
def _load_for_lite_interpreter_from_buffer(
buffer: BinaryIO,
map_location: Optional[DeviceLikeType],
): ...
def _export_operator_list(module: LiteScriptModule): ...
def _quantize_ondevice_ptq_dynamic(module: LiteScriptModule, method_name: str): ...
def _get_model_bytecode_version(filename: Union[str, Path]) -> _int: ...
def _get_model_bytecode_version_from_buffer(buffer: BinaryIO) -> _int: ...
def _backport_for_mobile(
filename_input: Union[str, Path],
filename_output: Union[str, Path],
to_version: _int,
) -> None: ...
def _backport_for_mobile_from_buffer(
buffer: BinaryIO,
filename_output: Union[str, Path],
to_version: _int,
) -> None: ...
def _backport_for_mobile_to_buffer(
filename_input: Union[str, Path],
to_version: _int,
) -> bytes: ...
def _backport_for_mobile_from_buffer_to_buffer(
buffer: BinaryIO,
to_version: _int,
) -> bytes: ...
def _get_model_ops_and_info(filename: Union[str, Path]): ...
def _get_model_ops_and_info_from_buffer(buffer: BinaryIO): ...
def _get_mobile_model_contained_types(filename: Union[str, Path]): ...
def _get_mobile_model_contained_types_from_buffer(buffer: BinaryIO): ...
def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ...
def _get_graph_executor_optimize(optimize: Optional[_bool] = None) -> _bool: ...
def _set_graph_executor_optimize(optimize: _bool): ...
def _export_opnames(module: ScriptModule) -> List[str]: ...
def _create_function_from_trace(
qualname: str,
func: Callable[..., Any],
input_tuple: Tuple[Any, ...],
var_lookup_fn: Callable[[Tensor], str],
strict: _bool,
force_outplace: _bool,
argument_names: List[str],
) -> Tuple[Graph, Stack]: ...
def _create_function_from_trace_with_dict(
qualname: str,
func: Callable[..., Any],
input_dict: Dict[str, Any],
var_lookup_fn: Callable[[Tensor], str],
strict: _bool,
force_outplace: _bool,
argument_names: List[str],
) -> Tuple[Graph, Stack]: ...
def _jit_is_script_object(obj: Any) -> _bool: ...
def _last_executed_optimized_graph() -> Graph: ...
def parse_type_comment(comment: str) -> Decl: ...
def _get_upgraders_map_size() -> _int: ...
def _get_upgraders_entry_map() -> Dict[str, str]: ...
def _dump_upgraders_map() -> Dict[str, str]: ...
def _test_only_populate_upgraders(content: Dict[str, str]) -> None: ...
def _test_only_remove_upgraders(content: Dict[str, str]) -> None: ...
def merge_type_from_type_comment(
decl: Decl,
type_annotation_decl: Decl,
is_method: _bool,
) -> Decl: ...
def parse_ir(input: str, parse_tensor_constants: _bool = False) -> Graph: ...
def parse_schema(schema: str) -> FunctionSchema: ...
def get_device(input: Tensor) -> _int: ...
def _resolve_type_from_object(
obj: Any,
range: SourceRange,
rcb: ResolutionCallback,
) -> JitType: ...
def _create_module_with_type(ty: JitType) -> ScriptModule: ...
def _create_object_with_type(ty: ClassType) -> ScriptObject: ...
def _run_emit_module_hook(m: ScriptModule): ...
def _replace_overloaded_method_decl(
overload_decl: Decl,
implementation_def: Def,
new_name: str,
) -> Def: ...
def _jit_pass_lower_all_tuples(graph: Graph) -> None: ...
def _jit_pass_onnx_set_dynamic_input_shape(
graph: Graph,
dynamic_axes: Dict[str, Dict[_int, str]],
input_names: List[str],
) -> None: ...
def _jit_pass_onnx_graph_shape_type_inference(
graph: Graph,
params_dict: Dict[str, IValue],
opset_version: _int,
) -> None: ...
def _jit_pass_onnx_assign_output_shape(
graph: Graph,
tensors: List[Tensor],
desc: IODescriptor,
onnx_shape_inference: _bool,
is_script: _bool,
opset_version: _int,
) -> None: ...
def _jit_pass_onnx_remove_inplace_ops_for_onnx(
graph: Graph,
module: Optional[ScriptModule] = None,
) -> None: ...
def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ...
def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ...
def _jit_pass_peephole(
graph: Graph,
disable_shape_peepholes: _bool = False,
) -> None: ...
def _jit_pass_onnx_autograd_function_process(graph: Graph) -> None: ...
def _jit_pass_fuse_addmm(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess(graph: Graph) -> None: ...
def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ...
def _jit_pass_onnx_remove_print(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ...
def _jit_pass_onnx_unpack_quantized_weights(
graph: Graph,
paramsDict: Dict[str, IValue],
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_quantization_insert_permutes(
graph: Graph,
paramsDict: Dict[str, IValue],
) -> Dict[str, IValue]: ...
def _jit_pass_custom_pattern_based_rewrite_graph(
pattern: str,
fused_node_name: str,
graph: Graph,
) -> None: ...
def _jit_onnx_list_model_parameters(
module: ScriptModule,
) -> Tuple[ScriptModule, List[IValue]]: ...
def _jit_pass_erase_number_types(graph: Graph) -> None: ...
def _jit_pass_onnx_lint(graph: Graph) -> None: ...
def _jit_pass_onnx(
graph: Graph,
_jit_pass_onnx: _onnx.OperatorExportTypes,
) -> Graph: ...
def _jit_pass_onnx_scalar_type_analysis(
graph: Graph,
lowprecision_cast: _bool,
opset_version: _int,
) -> None: ...
def _jit_pass_onnx_peephole(
graph: Graph,
opset_version: _int,
fixed_batch_size: _bool,
) -> None: ...
def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ...
def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ...
def _jit_pass_onnx_function_extraction(
graph: Graph,
module_names: Set[str],
param_names: List[str],
) -> Dict[Node, Dict[str, str]]: ...
def _jit_pass_onnx_clear_scope_records() -> None: ...
def _jit_pass_onnx_track_scope_attributes(
graph: Graph,
onnx_attrs: Dict[str, Any],
) -> None: ...
def _jit_is_onnx_log_enabled() -> _bool: ...
def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ...
def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ...
def _jit_onnx_log(*args: Any) -> None: ...
def _jit_pass_lower_graph(graph: Graph, m: Module) -> Tuple[Graph, List[IValue]]: ...
def _jit_pass_inline_fork_wait(graph: Graph) -> None: ...
def _jit_pass_onnx_deduplicate_initializers(
graph: Graph,
params_dict: Dict[str, IValue],
is_train: _bool,
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eval_peephole(
graph: Graph,
paramsDict: Dict[str, IValue],
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_constant_fold(
graph: Graph,
paramsDict: Dict[str, IValue],
opset_version: _int,
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eliminate_unused_items(
graph: Graph,
paramsDict: Dict[str, IValue],
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ...
def _jit_pass_filter_non_tensor_arguments(
params: Dict[str, IValue],
) -> Dict[str, Tensor]: ...
def _jit_decay_packed_param_input_types(graph: Graph) -> None: ...
def _jit_pass_onnx_node_shape_type_inference(
n: Node,
paramsDict: Dict[str, IValue],
opset_version: _int,
) -> None: ...
def _jit_onnx_convert_pattern_from_subblock(
block: Block,
n: Node,
env: Dict[Value, Value],
values_in_env: Set[Value],
) -> List[Value]: ...
def _jit_pass_onnx_block(
old_block: Block,
new_block: Block,
operator_export_type: _onnx.OperatorExportTypes,
env: Dict[Value, Value],
values_in_env: Set[Value],
is_sub_block: _bool,
) -> Dict[Value, Value]: ...
def _jit_pass_onnx_assign_scoped_names_for_node_and_value(graph: Graph) -> None: ...
def _jit_pass_fixup_onnx_controlflow_node(
n: Node,
opset_version: _int,
) -> List[Value]: ...
def _jit_onnx_create_full_scope_name(class_name: str, variable_name: str) -> str: ...
def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ...
def _generate_upgraders_graph() -> Dict[str, Graph]: ...
def _calculate_package_version_based_on_upgraders(val: _bool): ...
def _get_version_calculator_flag() -> _bool: ...
def _jit_script_interface_compile(
name: str,
class_def: ClassDef,
rcb: ResolutionCallback,
is_module: _bool,
): ...
def _jit_script_compile_overload(
qualname: str,
overload_decl: Decl,
implementation_def: Def,
rcb: ResolutionCallback,
implementation_defaults: Dict[str, Any],
signature: Any,
): ...
def _jit_script_compile(
qual_name: str,
definition: Def,
rcb: ResolutionCallback,
defaults: Dict[str, Any],
): ...
def _jit_script_class_compile(
qual_name: str,
definition: ClassDef,
defaults: Dict[str, Dict[str, Any]],
rcb: ResolutionCallback,
): ...
def _parse_source_def(src: str) -> Def: ...
def import_ir_module(
cu: CompilationUnit,
filename: Union[str, Path],
map_location: Optional[DeviceLikeType],
extra_files: Dict[str, Any],
) -> ScriptModule: ...
def import_ir_module_from_buffer(
cu: CompilationUnit,
buffer: BinaryIO,
map_location: Optional[DeviceLikeType],
extra_files: Dict[str, Any],
) -> ScriptModule: ...
def _import_ir_module_from_package(
cu: CompilationUnit,
reader: PyTorchFileReader,
storage_context: DeserializationStorageContext,
map_location: Optional[DeviceLikeType],
ts_id: str,
) -> ScriptModule: ...
def _assign_output_shapes(graph: Graph, inputs: List[Tensor]) -> Graph: ...
def _check_onnx_proto(proto: str) -> None: ...
def _propagate_and_assign_input_shapes(
graph: Graph,
inputs: Tuple[Tensor, ...],
param_count_list: List[_int],
with_grad: _bool,
propagate: _bool,
) -> Graph: ...
# Defined in torch/csrc/jit/runtime/graph_executor.h
class GraphExecutorState: ...
# Defined in torch/torch/csrc/jit/ir/alias_analysis.h
class AliasDb:
def __str__(self) -> str: ...
class _InsertPoint:
def __enter__(self) -> None: ...
def __exit__(self, *args) -> None: ...
# Defined in torch/csrc/jit/ir/ir.h
class Use:
@property
def user(self) -> Node: ...
@property
def offset(self) -> _int: ...
def isAfter(self, other: Use) -> _bool: ...
# Defined in torch/csrc/jit/ir/ir.h
class Value:
def type(self) -> JitType: ...
def setType(self, t: JitType) -> Value: ...
def setTypeAs(self, other: Value) -> Value: ...
def inferTypeFrom(self, t: Tensor) -> None: ...
def debugName(self) -> str: ...
def setDebugName(self, name: str) -> None: ...
def unique(self) -> _int: ...
def offset(self) -> _int: ...
def node(self) -> Node: ...
def uses(self) -> List[Use]: ...
def replaceAllUsesWith(self, val: Value) -> None: ...
def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ...
def requires_grad(self) -> _bool: ...
def requiresGrad(self) -> _bool: ...
def copyMetadata(self, other: Value) -> Value: ...
def isCompleteTensor(self) -> _bool: ...
def toIValue(self) -> IValue: ...
# Defined in torch/csrc/jit/ir/ir.h
class Block:
def inputs(self) -> Iterator[Value]: ...
def outputs(self) -> Iterator[Value]: ...
def nodes(self) -> Iterator[Node]: ...
def paramNode(self) -> Node: ...
def returnNode(self) -> Node: ...
def owningNode(self) -> Node: ...
def registerOutput(self, n: Value) -> _int: ...
def addNode(self, name: str, inputs: Sequence[Value]) -> Node: ...
# Defined in torch/csrc/jit/ir/ir.h
class Node:
def __getitem__(self, key: str) -> Any: ...
def schema(self) -> str: ...
def input(self) -> Value: ...
def inputs(self) -> Iterator[Value]: ...
def inputsAt(self, idx: _int) -> Value: ...
def inputsSize(self) -> _int: ...
def output(self) -> Value: ...
def outputs(self) -> Iterator[Value]: ...
def outputsAt(self, idx: _int) -> Value: ...
def outputsSize(self) -> _int: ...
def hasMultipleOutputs(self) -> _bool: ...
def blocks(self) -> List[Block]: ...
def addBlock(self) -> Block: ...
def mustBeNone(self) -> _bool: ...
def matches(self, pattern: str) -> _bool: ...
def kind(self) -> str: ...
def kindOf(self, name: str) -> str: ...
def addInput(self, name: str) -> Value: ...
def replaceInput(self, i: _int, newValue: Value) -> Value: ...
def replaceInputWith(self, from_: Value, to: Value) -> None: ...
def replaceAllUsesWith(self, n: Node) -> None: ...
def insertBefore(self, n: Node) -> Node: ...
def insertAfter(self, n: Node) -> Node: ...
def isBefore(self, n: Node) -> _bool: ...
def isAfter(self, n: Node) -> _bool: ...
def moveBefore(self, n: Node) -> None: ...
def moveAfter(self, n: Node) -> None: ...
def removeInput(self, i: _int) -> None: ...
def removeAllInputs(self, i: _int) -> None: ...
def hasUses(self) -> _bool: ...
def eraseOutput(self, i: _int) -> None: ...
def addOutput(self) -> Value: ...
def scopeName(self) -> str: ...
def isNondeterministic(self) -> _bool: ...
def copyAttributes(self, rhs: Node) -> Node: ...
def copyMetadata(self, rhs: Node) -> Node: ...
def hasAttributes(self) -> _bool: ...
def hasAttribute(self, name: str) -> _bool: ...
def removeAttribute(self, attr: str) -> Node: ...
def namedInput(self, name: str) -> Value: ...
def sourceRange(self) -> SourceRange: ...
def owningBlock(self) -> Block: ...
def findNode(self, kind: str, recurse: _bool = True) -> Node: ...
def findAllNodes(self, kind: str, recurse: _bool = True) -> List[Node]: ...
def getModuleHierarchy(self) -> str: ...
def prev(self) -> Node: ...
def destroy(self) -> None: ...
def attributeNames(self) -> List[str]: ...
# Accessors for attributes as types.
def f(self, name: str) -> _float: ...
def f_(self, name: str, val: _float) -> Node: ...
def fs(self, name: str) -> List[_float]: ...
def fs_(self, name: str, val: List[_float]) -> Node: ...
def c(self, name: str) -> complex: ...
def c_(self, name: str, val: complex) -> Node: ...
def s(self, name: str) -> str: ...
def s_(self, name: str, val: str) -> Node: ...
def ss(self, name: str) -> List[str]: ...
def ss_(self, name: str, val: List[str]) -> Node: ...
def i(self, name: str) -> _int: ...
def i_(self, name: str, val: _int) -> Node: ...
# Cannot define "is" like this because it's a reserved keyword in python.
# def is(self, name: str) -> List[_int]: ...
# def is_(self, name: str, val: List[_int]) -> Node: ...
def g(self, name: str) -> Graph: ...
def g_(self, name: str, val: Graph) -> Node: ...
def gs(self, name: str) -> List[Graph]: ...
def gs_(self, name: str, val: List[Graph]) -> Node: ...
def ival(self, name: str) -> IValue: ...
def ival_(self, name: str, val: IValue) -> Node: ...
def t(self, name: str) -> Tensor: ...
def t_(self, name: str, val: Tensor) -> Node: ...
def ts(self, name: str) -> List[Tensor]: ...
def ts_(self, name: str, val: List[Tensor]) -> Node: ...
def ty(self, name: str) -> JitType: ...
def ty_(self, name: str, val: JitType) -> Node: ...
def tys(self, name: str) -> List[JitType]: ...
def tys_(self, name: str, val: List[JitType]) -> Node: ...
# Defined in torch/torch/csrc/jit/ir/ir.h
class Graph:
def inputs(self) -> Iterator[Value]: ...
def outputs(self) -> Iterator[Value]: ...
def nodes(self) -> Iterator[Node]: ...
def param_node(self) -> Node: ...
def return_node(self) -> Node: ...
def addInput(self, name: str = "") -> Value: ...
def eraseInput(self, i: _int) -> None: ...
def registerOutput(self, n: Value) -> _int: ...
def eraseOutput(self, i: _int) -> None: ...
def create(self, name: str, args, num_outputs: _int) -> Node: ...
def appendNode(self, n: Node) -> Node: ...
def prependNode(self, n: Node) -> Node: ...
def insertNode(self, n: Node) -> Node: ...
def block(self) -> Block: ...
def lint(self) -> None: ...
def alias_db(self) -> AliasDb: ...
def setInsertPoint(self, n: Union[Block, Node]) -> None: ...
def insert_point_guard(self, n: Union[Block, Node]) -> _InsertPoint: ...
def insertPoint(self) -> Node: ...
def insertGraph(self, callee: Graph, inputs: List[Value]) -> List[Value]: ...
def makeMultiOutputIntoTuple(self) -> None: ...
def copy(self) -> Graph: ...
# Defined in torch/aten/src/ATen/core/alias_info.h
class AliasInfo:
is_write: _bool
before_set: Set[str]
after_set: Set[str]
# Defined in torch/aten/src/ATen/core/function_schema.h
class Argument:
name: str
type: JitType
default_value: Optional[Any]
def has_default_value(self) -> _bool: ...
kwarg_only: _bool
is_out: _bool
alias_info: Optional[AliasInfo]
is_write: _bool
class FunctionSchema:
arguments: List[Argument]
returns: List[Argument]
name: str
overload_name: str
is_mutable: _bool
class _UpgraderEntry:
bumped_at_version: _int
upgrader_name: str
old_schema: str
def __init__(
self,
bumped_at_version: _int,
upgrader_name: str,
old_schema: str,
) -> None: ...
class _UpgraderRange:
min_version: _int
max_version: _int
def _get_max_operator_version() -> _int: ...
def _get_operator_version_map() -> Dict[str, List[_UpgraderEntry]]: ...
def _get_upgrader_ranges(name: str) -> List[_UpgraderRange]: ...
def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ...
def _test_only_remove_entry_to_op_version(op_name: str) -> None: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class ScriptModuleSerializer:
def __init__(self, export_writer: PyTorchFileWriter) -> None: ...
def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ...
def write_files(self) -> None: ...
def storage_context(self) -> SerializationStorageContext: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class SerializationStorageContext:
def __init__(self) -> None: ...
def has_storage(self, storage: Storage) -> _bool: ...
def get_or_add_storage(self, storage: Storage) -> _int: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class DeserializationStorageContext:
def __init__(self) -> None: ...
def get_storage(self, name: str, dtype: _dtype) -> Tensor: ...
def has_storage(self, name: str) -> _bool: ...
def add_storage(self, name: str, tensor: Tensor) -> _int: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class ConcreteModuleTypeBuilder:
def __init__(self, obj: Any) -> None: ...
def set_module_dict(self): ...
def set_module_list(self): ...
def set_parameter_list(self): ...
def set_parameter_dict(self): ...
def add_attribute(
self,
name: str,
ty: JitType,
is_param: _bool,
is_buffer: _bool,
): ...
def add_module(self, name: str, meta: ConcreteModuleType): ...
def add_constant(self, name: str, value: Any): ...
def add_overload(self, method_name: str, overloaded_method_names: List[str]): ...
def add_builtin_function(self, name: str, symbol_name: str): ...
def add_failed_attribute(self, name: str, failure_reason: str): ...
def add_function_attribute(
self,
name: str,
ty: JitType,
func: Callable[..., Any],
): ...
def add_ignored_attribute(self, name: str): ...
def add_ignored_attributes(self, names: List[str]): ...
def add_forward_hook(self, hook: Callable[..., Any]): ...
def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ...
class ConcreteModuleType:
def get_constants(self) -> Dict[str, Any]: ...
def equals(self, other: ConcreteModuleType) -> _bool: ...
@staticmethod
def from_jit_type(ty: JitType) -> ConcreteModuleType: ...
class CallStack:
def __init__(self, name: str, range: SourceRange): ...
class ErrorReport:
def __init__(self, range: SourceRange) -> None: ...
def what(self) -> str: ...
@staticmethod
def call_stack() -> str: ...
class CompilationUnit:
def __init__(self, lang: str = ..., _frames_up: _int = ...) -> None: ...
def find_function(self, name: str) -> ScriptFunction: ...
def __getattr__(self, name: str) -> ScriptFunction: ...
def define(
self,
script: str,
rcb: ResolutionCallback = ...,
_frames_up: _int = ...,
): ...
def get_interface(self, name: str) -> InterfaceType: ...
def get_functions(self) -> List[ScriptFunction]: ...
def create_function(
self,
name: str,
graph: Graph,
shouldMangle: _bool = ...,
) -> ScriptFunction: ...
def get_class(self, name: str) -> ClassType: ...
class ScriptObject:
def setattr(self, name: str, value: Any): ...
class ScriptModule(ScriptObject):
def _method_names(self) -> List[str]: ...
def _get_method(self, name: str) -> ScriptMethod: ...
class LiteScriptModule:
def __call__(self, *input): ...
def find_method(self, method_name: str): ...
def forward(self, *input) -> List[str]: ...
def run_method(self, method_name: str, *input): ...
# NOTE: switch to collections.abc.Callable in python 3.9
class ScriptFunction(Generic[P, ReturnVal]):
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ...
def save(self, filename: str, _extra_files: Dict[str, bytes]) -> None: ...
def save_to_buffer(self, _extra_files: Dict[str, bytes]) -> bytes: ...
@property
def graph(self) -> Graph: ...
def inlined_graph(self) -> Graph: ...
def schema(self) -> FunctionSchema: ...
def code(self) -> str: ...
def name(self) -> str: ...
@property
def qualified_name(self) -> str: ...
# NOTE: switch to collections.abc.Callable in python 3.9
class ScriptMethod(Generic[P, ReturnVal]):
graph: Graph
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ...
@property
def owner(self) -> ScriptModule: ...
@property
def name(self) -> str: ...
class ScriptDict(Generic[K, T]):
def __init__(self, dict: Dict[K, T]) -> None: ...
def __len__(self) -> _int: ...
def __contains__(self, key: K) -> _bool: ...
def __getitem__(self, key: K) -> T: ...
def __setitem__(self, key: K, value: T) -> None: ...
def __delitem__(self, key: K) -> None: ...
def __iter__(self) -> Iterator[K]: ...
def items(self) -> Iterator[tuple[K, T]]: ...
def keys(self) -> Iterator[K]: ...
class ScriptList(Generic[T]):
def __init__(self, list: List[T]) -> None: ...
def __len__(self) -> _int: ...
def __contains__(self, item: T) -> _bool: ...
@overload
def __getitem__(self, idx: _int) -> T: ...
@overload
def __getitem__(self, idx: slice) -> ScriptList[T]: ...
@overload
def __setitem__(self, idx: _int, value: T) -> None: ...
@overload
def __setitem__(self, idx: slice, value: List[T]) -> None: ...
def __delitem__(self, idx: _int) -> None: ...
def __iter__(self) -> Iterator[T]: ...
def count(self, value: T) -> _int: ...
def remove(self, value: T) -> None: ...
def append(self, value: T) -> None: ...
def clear(self) -> None: ...
@overload
def extend(self, values: List[T]) -> None: ...
@overload
def extend(self, values: Iterable[T]) -> None: ...
@overload
def pop(self) -> T: ...
@overload
def pop(self, idx: _int) -> T: ...
class ModuleDict:
def __init__(self, mod: ScriptModule) -> None: ...
def items(self) -> List[Tuple[str, Any]]: ...
class ParameterDict:
def __init__(self, mod: ScriptModule) -> None: ...
class BufferDict:
def __init__(self, mod: ScriptModule) -> None: ...
# Defined in torch/csrc/jit/api/module.h
class Module: ...
# Defined in torch/csrc/Module.cpp
def _initExtension(shm_manager_path: str) -> None: ... # THPModule_initExtension
def _autograd_init() -> _bool: ... # THPAutograd_initExtension
def _add_docstr(obj: T, doc_obj: str) -> T: ... # THPModule_addDocStr
def _init_names(arg: Sequence[_Type]) -> None: ... # THPModule_initNames
def _has_distributed() -> _bool: ... # THPModule_hasDistributed
def _set_default_tensor_type(type) -> None: ... # THPModule_setDefaultTensorType
def _set_default_dtype(d: _dtype) -> None: ... # THPModule_setDefaultDtype
def _infer_size(arg1: Size, arg2: Size) -> Size: ... # THPModule_inferSize
def _crash_if_csrc_asan() -> _int: ... # THPModule_crashIfCsrcASAN
def _crash_if_csrc_ubsan() -> _int: ... # THPModule_crashIfCsrcUBSAN
def _crash_if_aten_asan() -> _int: ... # THPModule_crashIfATenASAN
def _show_config() -> str: ... # THPModule_showConfig
def _cxx_flags() -> str: ... # THPModule_cxxFlags
def _parallel_info() -> str: ... # THPModule_parallelInfo
def _get_cpu_capability() -> str: ... # THPModule_getCpuCapability
def _set_backcompat_broadcast_warn(
arg: _bool,
) -> None: ... # THPModule_setBackcompatBroadcastWarn
def _get_backcompat_broadcast_warn() -> _bool: ... # THPModule_getBackcompatBroadcastWarn
def _set_backcompat_keepdim_warn(
arg: _bool,
) -> None: ... # THPModule_setBackcompatKeepdimWarn
def _get_backcompat_keepdim_warn() -> _bool: ... # THPModule_getBackcompatKeepdimWarn
def get_num_thread() -> _int: ... # THPModule_getNumThreads
def set_num_threads(nthreads: _int) -> None: ... # THPModule_setNumThreads
def get_num_interop_threads() -> _int: ... # THPModule_getNumInteropThreads
def set_num_interop_threads(
nthreads: _int,
) -> None: ... # THPModule_setNumInteropThreads
def _get_cudnn_enabled() -> _bool: ... # THPModule_userEnabledCuDNN
def _set_cudnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledCuDNN
def _get_flash_sdp_enabled() -> _bool: ... # THPModule_userEnabledFusedSDP
def _set_sdp_use_flash(arg: _bool) -> None: ... # THPModule_setSDPUseFlash
def _get_mem_efficient_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
def _set_sdp_use_mem_efficient(
arg: _bool,
) -> None: ... # THPModule_setSDPUseMemEfficient
def _get_math_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
def _set_sdp_use_math(arg: _bool) -> None: ... # THPModule_setSDPUseMath
def _get_math_sdp_allow_fp16_bf16_reduction() -> _bool: ... # THPModule_allowFP16BF16ReductionMathSDP
def _set_math_sdp_allow_fp16_bf16_reduction(arg: _bool) -> None: ... # THPModule_setAllowFP16BF16ReductionMathSDP
def _get_overrideable_sdp_enabled() -> _bool: ... # THPModule_userEnabledOverrideableSDP
def _set_sdp_use_overrideable(arg: _bool) -> None: ... # THPModule_setSDPUseOverrideable
def _get_sdp_priority_order() -> List[_int]: ... #THPModule_getSDPPriorityOrder
def _set_sdp_priority_order(arg: List[_int]) -> None: ... #THPModule_setSDPPriorityOrder
def _get_cudnn_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP
def _set_sdp_use_cudnn(arg: _bool) -> None: ... # THPModule_setSDPUseMath
def _get_mkldnn_enabled() -> _bool: ... # THPModule_userEnabledMkldnn
def _set_mkldnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledMkldnn
def _get_cudnn_benchmark() -> _bool: ... # THPModule_benchmarkCuDNN
def _set_cudnn_benchmark(arg: _bool) -> None: ... # THPModule_setBenchmarkCuDNN
def _get_cudnn_deterministic() -> _bool: ... # THPModule_deterministicCuDNN
def _set_cudnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicCuDNN
def _get_mkldnn_deterministic() -> _bool: ... # THPModule_deterministicMkldnn
def _set_mkldnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicMkldnn
def _get_deterministic_algorithms() -> _bool: ... # THPModule_deterministicAlgorithms
def _get_deterministic_algorithms_warn_only() -> _bool: ... # THPModule_deterministicAlgorithmsWarnOnly
def _set_deterministic_algorithms(
mode: _bool,
*,
warn_only: _bool = ...,
) -> None: ... # THPModule_setDeterministicAlgorithms
def _get_deterministic_fill_uninitialized_memory() -> _bool: ... # THPModule_deterministicFillUninitializedMemory
def _set_deterministic_fill_uninitialized_memory(arg: _bool) -> None: ... # THPModule_setDeterministicFillUninitializedMemory
def _get_nnpack_enabled() -> _bool: ... # THPModule_userEnabledNNPACK
def _set_nnpack_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledNNPACK
def _get_warnAlways() -> _bool: ... # THPModule_warnAlways
def _set_warnAlways(arg: _bool) -> None: ... # THPModule_setWarnAlways
def _get_cudnn_allow_tf32() -> _bool: ... # THPModule_allowTF32CuDNN
def _set_cudnn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuDNN
def _get_cublas_allow_tf32() -> _bool: ... # THPModule_allowTF32CuBLAS
def _set_cublas_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuBLAS
def _get_float32_matmul_precision() -> str: ... # THPModule_float32MatmulPrecision
def _set_float32_matmul_precision(
arg: str,
) -> None: ... # THPModule_setFloat32MatmulPrecision
def _get_cublas_allow_fp16_reduced_precision_reduction() -> _bool: ... # THPModule_allowFP16ReductionCuBLAS
def _set_cublas_allow_fp16_reduced_precision_reduction(
arg: _bool,
) -> None: ... # THPModule_setAllowFP16ReductionCuBLAS
def _get_cublas_allow_bf16_reduced_precision_reduction() -> _bool: ... # THPModule_allowBF16ReductionCuBLAS
def _set_cublas_allow_bf16_reduced_precision_reduction(
arg: _bool,
) -> None: ... # THPModule_setAllowBF16ReductionCuBLAS
def _set_conj(x: Tensor, conj: _bool) -> None: ...
def _set_neg(x: Tensor, neg: _bool) -> None: ...
def _set_meta_in_tls_dispatch_include(meta_in_tls: _bool) -> None: ...
def _meta_in_tls_dispatch_include() -> _bool: ...
def _stash_obj_in_tls(key: str, arg: Any) -> None: ...
def _get_obj_in_tls(key: str) -> Any: ...
def _is_key_in_tls(key: str) -> _bool: ...
def _select_batch_norm_backend(*args, **kwargs) -> BatchNormBackend: ...
def _select_conv_backend(*args, **kwargs) -> ConvBackend: ...
def _conv_determine_backend_memory_format(
input: Tensor,
weight: Tensor,
backend: ConvBackend,
) -> memory_format: ...
def _has_storage(x: Tensor) -> _bool: ...
def _construct_storage_from_data_pointer(data_ptr: _int, device: torch.device, size: _int) -> Storage: ...
def _should_allow_numbers_as_tensors(func_name: str) -> _bool: ...
def _group_tensors_by_device_and_dtype(nested_tensorlists: List[List[Optional[Tensor]]], with_indices: _bool = False) -> Dict[Tuple[torch.device, torch.dtype], Tuple[List[List[Optional[Tensor]]], List[_int]]]: ...
# NB: There is no Capsule type in typing, see
# https://code.activestate.com/lists/python-dev/139675/
def _to_dlpack(data: Tensor) -> Any: ... # THPModule_toDLPack
def _from_dlpack(data: Any) -> Tensor: ... # THPModule_fromDLPack
def _get_cpp_backtrace(
frames_to_skip: _int,
maximum_number_of_frames: _int,
) -> str: ... # THPModule_getCppBacktrace
def set_flush_denormal(arg: _bool) -> _bool: ... # THPModule_setFlushDenormal
def get_default_dtype() -> _dtype: ... # THPModule_getDefaultDtype
def _get_default_device() -> str: ... # THPModule_getDefaultDevice
def _get_qengine() -> _int: ... # THPModule_qEngine
def _set_qengine(qengine: _int) -> None: ... # THPModule_setQEngine
def _supported_qengines() -> List[_int]: ... # THPModule_supportedQEngines
def _is_xnnpack_enabled() -> _bool: ... # THPModule_isEnabledXNNPACK
def _check_sparse_tensor_invariants() -> _bool: ... # THPModule_checkSparseTensorInvariants
def _set_check_sparse_tensor_invariants(
arg: _bool,
) -> None: ... # THPModule_setCheckSparseTensorInvariants
def _set_default_mobile_cpu_allocator() -> None: ... # THPModule_setDefaultMobileCPUAllocator
def _unset_default_mobile_cpu_allocator() -> None: ... # THPModule_unsetDefaultMobileCPUAllocator
def _is_torch_function_enabled() -> _bool: ... # THPModule_isEnabledTorchFunction
def _is_torch_function_all_disabled() -> _bool: ... # THPModule_isAllDisabledTorchFunction
def _has_torch_function(
args: Iterable[Any],
) -> _bool: ... # THPModule_has_torch_function
def _has_torch_function_unary(Any) -> _bool: ... # THPModule_has_torch_function_unary
def _has_torch_function_variadic(
*args: Any,
) -> _bool: ... # THPModule_has_torch_function_variadic
def _vmapmode_increment_nesting() -> _int: ... # THPModule_vmapmode_increment_nesting
def _vmapmode_decrement_nesting() -> _int: ... # THPModule_vmapmode_decrement_nesting
def _log_api_usage_once(str) -> None: ... # LogAPIUsageOnceFromPython
def _log_api_usage_metadata(event: str, metadata_map: Dict[str, str]) -> None: ... # LogAPIUsageMetadataFromPython
def _demangle(str) -> str: ... # c10::demangle
def _disabled_torch_function_impl(
func: Callable,
types: Iterable[_Type],
args: Tuple,
kwargs: Dict,
) -> Any: ... # THPModule_disable_torch_function
def _disabled_torch_dispatch_impl(
func: Callable,
types: Iterable[_Type],
args: Tuple,
kwargs: Dict,
) -> Any: ... # THPModule_disable_dispatch_function
def _get_linalg_preferred_backend() -> torch._C._LinalgBackend: ...
def _set_linalg_preferred_backend(arg: torch._C._LinalgBackend): ...
class _LinalgBackend:
Default: _LinalgBackend
Cusolver: _LinalgBackend
Magma: _LinalgBackend
class BatchNormBackend(Enum): ...
def _get_blas_preferred_backend() -> torch._C._BlasBackend: ...
def _set_blas_preferred_backend(arg: torch._C._BlasBackend): ...
class _BlasBackend:
Cublas: _BlasBackend
Cublaslt: _BlasBackend
Ck: _BlasBackend
class ConvBackend(Enum): ...
class Tag(Enum):
${tag_attributes}
# Defined in `valgrind.h` and `callgrind.h` respectively.
def _valgrind_supported_platform() -> _bool: ... # NVALGRIND
def _valgrind_toggle() -> None: ... # CALLGRIND_TOGGLE_COLLECT
def _valgrind_toggle_and_dump_stats() -> None: ... # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS
has_openmp: _bool
has_mkl: _bool
_has_mps: _bool
has_lapack: _bool
_has_cuda: _bool
_has_magma: _bool
_has_xpu: _bool
_has_mkldnn: _bool
_has_cudnn: _bool
_has_cusparselt: _bool
has_spectral: _bool
_GLIBCXX_USE_CXX11_ABI: _bool
default_generator: Generator
# Defined in torch/csrc/autograd/init.cpp
def _set_grad_enabled(enabled: _bool) -> None: ...
def is_grad_enabled() -> _bool: ...
def _set_fwd_grad_enabled(enabled: _bool) -> None: ...
def _is_fwd_grad_enabled() -> _bool: ...
def is_inference_mode_enabled() -> _bool: ...
@overload
def set_autocast_enabled(device_type: str, enabled: _bool) -> None: ...
@overload
def set_autocast_enabled(enabled: _bool) -> None: ...
@overload
def is_autocast_enabled(device_type: str) -> _bool: ...
@overload
def is_autocast_enabled() -> _bool: ...
def set_autocast_dtype(device_type: str, dtype: _dtype) -> None: ...
def get_autocast_dtype(device_type: str) -> _dtype: ...
def clear_autocast_cache() -> None: ...
def set_autocast_cpu_enabled(enabled: _bool) -> None: ...
def is_autocast_cpu_enabled() -> _bool: ...
def _is_any_autocast_enabled() -> _bool: ...
def _is_autocast_available(device_type: str) -> _bool: ...
def set_autocast_cpu_dtype(dtype: _dtype) -> None: ...
def set_autocast_gpu_dtype(dtype: _dtype) -> None: ...
def get_autocast_cpu_dtype() -> _dtype: ...
def get_autocast_gpu_dtype() -> _dtype: ...
def autocast_increment_nesting() -> _int: ...
def autocast_decrement_nesting() -> _int: ...
def is_autocast_cache_enabled() -> _bool: ...
def set_autocast_cache_enabled(enabled: _bool) -> None: ...
def _increment_version(tensors: Iterable[Tensor]) -> None: ...
def set_anomaly_enabled(enabled: _bool, check_nan: _bool = True) -> None: ...
def is_anomaly_enabled() -> _bool: ...
def is_anomaly_check_nan_enabled() -> _bool: ...
def _is_multithreading_enabled() -> _bool: ...
def _set_multithreading_enabled(enabled: _bool) -> None: ...
def _set_view_replay_enabled(enabled: _bool) -> None: ...
def _is_view_replay_enabled() -> _bool: ...
def _enter_dual_level() -> _int: ...
def _exit_dual_level(level: _int) -> None: ...
def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ...
def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ...
def __set_forward_AD_enabled(enabled: _bool) -> None: ...
def __is_forward_AD_enabled() -> _bool: ...
def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
def _reset_default_hooks() -> None: ...
def _is_torch_function_mode_enabled() -> _bool: ...
def _push_on_torch_function_stack(cls: Any) -> None: ...
def _pop_torch_function_stack() -> Any: ...
def _get_function_stack_at(idx: _int) -> Any: ...
def _len_torch_function_stack() -> _int: ...
def _set_torch_dispatch_mode(cls: Any) -> None: ...
def _push_on_torch_dispatch_stack(cls: TorchDispatchMode) -> None: ...
def _pop_torch_dispatch_stack(mode_key: Optional[torch._C._TorchDispatchModeKey] = None) -> Any: ...
def _get_dispatch_mode(mode_key: Optional[torch._C._TorchDispatchModeKey]) -> Any: ...
def _unset_dispatch_mode(mode: torch._C._TorchDispatchModeKey) -> Optional[TorchDispatchMode]: ...
def _set_dispatch_mode(mode: TorchDispatchMode) -> None: ...
def _get_dispatch_stack_at(idx: _int) -> Any: ...
def _len_torch_dispatch_stack() -> _int: ...
def _activate_gpu_trace() -> None: ...
class _DisableTorchDispatch:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _EnableTorchFunction:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _EnablePythonDispatcher:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _DisablePythonDispatcher:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _EnablePreDispatch:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _DisableFuncTorch:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _DisableAutocast:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _InferenceMode:
def __init__(self, enabled: _bool): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
def _set_autograd_fallback_mode(mode: str) -> None: ...
def _get_autograd_fallback_mode() -> str: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class LoggerBase: ...
class NoopLogger(LoggerBase): ...
class LockingLogger(LoggerBase): ...
class AggregationType(Enum):
SUM = 0
AVG = 1
class FileCheck:
def run(self, test_string: str) -> None: ...
def check(self, test_string: str) -> FileCheck: ...
def check_not(self, test_string: str) -> FileCheck: ...
def check_same(self, test_string: str) -> FileCheck: ...
def check_next(self, test_string: str) -> FileCheck: ...
def check_count(
self,
test_string: str,
count: _int,
exactly: _bool = False,
) -> FileCheck: ...
def check_dag(self, test_string: str) -> FileCheck: ...
def check_source_highlighted(self, test_string: str) -> FileCheck: ...
def check_regex(self, test_string: str) -> FileCheck: ...
# Defined in torch/csrc/jit/python/init.cpp
class PyTorchFileReader:
@overload
def __init__(self, name: str) -> None: ...
@overload
def __init__(self, buffer: BinaryIO) -> None: ...
def get_record(self, name: str) -> bytes: ...
def serialization_id(self) -> str: ...
class PyTorchFileWriter:
@overload
def __init__(self, name: str, compute_crc32 = True) -> None: ...
@overload
def __init__(self, buffer: BinaryIO, compute_crc32 = True) -> None: ...
def write_record(self, name: str, data: Union[Storage, bytes, _int], size: _int) -> None: ...
def write_end_of_file(self) -> None: ...
def set_min_version(self, version: _int) -> None: ...
def get_all_written_records(self) -> List[str]: ...
def archive_name(self) -> str: ...
def serialization_id(self) -> str: ...
def _jit_get_inline_everything_mode() -> _bool: ...
def _jit_set_inline_everything_mode(enabled: _bool) -> None: ...
def _jit_get_logging_option() -> str: ...
def _jit_set_logging_option(option: str) -> None: ...
def _jit_set_logging_stream(stream_name: str) -> None: ...
def _jit_pass_cse(Graph) -> _bool: ...
def _jit_pass_dce(Graph) -> None: ...
def _jit_pass_lint(Graph) -> None: ...
# Defined in torch/csrc/jit/python/python_custom_class.cpp
def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ...
# Defined in torch/csrc/Module.cpp
def _rename_privateuse1_backend(backend: str) -> None: ...
def _get_privateuse1_backend_name() -> str: ...
# Defined in torch/csrc/Generator.cpp
class Generator:
device: _device
def __init__(self, device: Optional[DeviceLikeType] = None) -> None: ...
def __reduce__(self) -> Tuple[_Type[Generator], Tuple[_device], Tuple[_int, Optional[_int], Tensor]]: ...
def __setstate__(self, state: Tuple[_int, Optional[_int], Tensor]) -> None: ...
def get_state(self) -> Tensor: ...
def set_state(self, _new_state: Tensor) -> Generator: ...
def clone_state(self) -> Generator: ...
def graphsafe_get_state(self) -> Generator: ...
def graphsafe_set_state(self, _new_state: Generator) -> Generator: ...
def set_offset(self, offset: _int) -> Generator: ...
def get_offset(self) -> _int: ...
def manual_seed(self, seed: _int) -> Generator: ...
def seed(self) -> _int: ...
def initial_seed(self) -> _int: ...
# Defined in torch/csrc/utils/python_dispatch.cpp
class _DispatchOperatorHandle:
def schema(self) -> FunctionSchema: ...
def debug(self) -> str: ...
class _DispatchModule:
def reset(self) -> None: ...
def def_(self, schema: str, alias: str = "") -> _DispatchModule: ...
def def_legacy(self, schema: str) -> _DispatchModule: ...
def def_name_t_t(
self,
name: str,
dispatch: str,
debug: str = "default_def_name_t_t",
) -> _DispatchModule: ...
def def_schema_t_t(
self,
schema: str,
dispatch: str,
alias: str,
debug: str = "default_def_schema_t_t",
) -> _DispatchModule: ...
def impl_t_t(
self,
name: str,
dispatch: str,
debug: str = "impl_t_t",
) -> _DispatchModule: ...
def impl_with_aoti_compile(
self,
ns: str,
op_name_with_overload: str,
dispatch: _dispatchkey
) -> None: ...
def impl(self, name: str, dispatch: _dispatchkey, func: Callable) -> None: ...
def define(self, schema: str, alias: str = "") -> str: ...
def fallback_fallthrough(self, dispatch: str = "") -> _DispatchModule: ...
def fallback(self, dispatch: _dispatchkey, func: Callable, with_keyset: _bool = False) -> None: ...
_after_ADInplaceOrView_keyset: DispatchKeySet
_after_autograd_keyset: DispatchKeySet
def _dispatch_library(
kind: str,
name: str,
dispatch: str,
file: str = "",
linenum: Any = 0,
) -> _DispatchModule: ...
def _dispatch_dump(name: str) -> str: ...
def _dispatch_dump_table(name: str) -> str: ...
def _dispatch_check_invariants(name: str) -> None: ...
def _dispatch_check_all_invariants() -> None: ...
def _dispatch_call_boxed(handle: _DispatchOperatorHandle, *args, **kwargs) -> Any: ...
def _dispatch_find_schema_or_throw(name: str, overload_name: str) -> _DispatchOperatorHandle: ...
def _dispatch_set_report_error_callback(handle: _DispatchOperatorHandle, callback: Callable) -> None: ...
def _dispatch_has_kernel(name: str) -> _bool: ...
def _dispatch_has_kernel_for_dispatch_key(
name: str,
dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_has_kernel_for_any_dispatch_key(
name: str,
dispatch_key_set: DispatchKeySet,
) -> _bool: ...
def _dispatch_kernel_for_dispatch_key_is_fallthrough(
name: str,
dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_has_computed_kernel_for_dispatch_key(
name: str,
dispatch: _dispatchkey,
) -> _bool: ...
def _dispatch_find_dangling_impls() -> List[str]: ...
def _dispatch_get_all_op_names() -> List[str]: ...
def _dispatch_tls_set_dispatch_key_excluded(
dispatch: _dispatchkey,
val: _bool,
) -> None: ...
def _dispatch_tls_is_dispatch_key_excluded(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_tls_set_dispatch_key_included(
dispatch: _dispatchkey,
val: _bool,
) -> None: ...
def _dispatch_tls_is_dispatch_key_included(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_isTensorSubclassLike(tensor: Tensor) -> _bool: ...
def _dispatch_key_name(dispatch: _dispatchkey) -> str: ...
def _dispatch_key_for_device(device_type: str) -> str: ...
def _parse_dispatch_key(key: str) -> Optional[DispatchKey]: ...
def _dispatch_key_parse(dispatch: _dispatchkey) -> DispatchKey: ...
def _dispatch_num_backends() -> _int: ...
def _dispatch_pystub(name: str, overload: str) -> Optional[Tuple[str, str]]: ...
def _dispatch_is_alias_key(dispatch: _dispatchkey) -> _bool: ...
def _functionality_to_backend_keys(dispatch: _dispatchkey) -> List[DispatchKey]: ...
def _functionalization_reapply_views_tls() -> _bool: ...
def _only_lift_cpu_tensors() -> _bool: ...
def _set_only_lift_cpu_tensors(value: _bool) -> None: ...
def _set_throw_on_mutable_data_ptr(tensor: Tensor) -> None: ...
def _set_warn_deprecated_on_mutable_data_ptr(tensor: Tensor) -> None: ...
class DispatchKey(Enum):
${dispatch_key_hints}
class DispatchKeySet:
def __init__(self, key: DispatchKey) -> None: ...
def __or__(self, other: DispatchKeySet) -> DispatchKeySet: ...
def __sub__(self, other: DispatchKeySet) -> DispatchKeySet: ...
def __and__(self, other: DispatchKeySet) -> DispatchKeySet: ...
def raw_repr(self) -> _int: ...
def highestPriorityTypeId(self) -> DispatchKey: ...
def has(self, k: _dispatchkey) -> _bool: ...
def add(self, k: _dispatchkey) -> DispatchKeySet: ...
def remove(self, k: _dispatchkey) -> DispatchKeySet: ...
def __repr__(self) -> str: ...
_dispatch_autogradother_backends: DispatchKeySet
_additional_keys_to_prop_for_wrapper_tensors: DispatchKeySet
def _dispatch_has_backend_fallback(dispatch: _dispatchkey) -> _bool: ...
def _dispatch_keyset_full_after(t: _dispatchkey) -> DispatchKeySet: ...
def _dispatch_keyset_full() -> DispatchKeySet: ...
def _dispatch_keyset_to_string(keyset: DispatchKeySet) -> str: ...
def _dispatch_get_backend_keyset_from_autograd(
dispatch: _dispatchkey,
) -> DispatchKeySet: ...
def _dispatch_keys(tensor: Tensor) -> DispatchKeySet: ...
def _dispatch_tls_local_exclude_set() -> DispatchKeySet: ...
def _dispatch_tls_local_include_set() -> DispatchKeySet: ...
def _dispatch_is_included_in_alias(
dispatch_a: _dispatchkey,
dispatch_b: _dispatchkey,
) -> _bool: ...
def _propagate_xla_data(a: Tensor, b: Tensor) -> None: ...
def _replace_(a: Tensor, b: Tensor) -> None: ...
def _commit_update(a: Tensor) -> None: ...
class _ExcludeDispatchKeyGuard:
def __init__(self, keyset: DispatchKeySet): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _IncludeDispatchKeyGuard:
def __init__(self, k: DispatchKey): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _ForceDispatchKeyGuard:
def __init__(self, include: DispatchKeySet, exclude: DispatchKeySet): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _PreserveDispatchKeyGuard:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _AutoDispatchBelowAutograd:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
class _AutoDispatchBelowADInplaceOrView:
def __init__(self): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ...
def _dispatch_get_registrations_for_dispatch_key(
dispatch_key: str = "",
) -> List[str]: ...
def _are_functorch_transforms_active() -> _bool: ...
# Define in torch/csrc/autograd/init.cpp
def _set_python_dispatcher(dispatcher: object) -> None: ...
def _get_nested_int(id: _int, coeff: _int) -> SymInt: ...
def _get_constant_bool_symnode(val: _bool) -> Any: ...
class _TorchDispatchModeKey(Enum):
${torch_dispatch_mode_key_hints}
class _SetExcludeDispatchKeyGuard:
def __init__(self, k: DispatchKey, enabled: _bool): ...
def __enter__(self): ...
def __exit__(self, exc_type, exc_value, traceback): ...
# Defined in torch/csrc/utils/schema_info.h
class _SchemaInfo:
def __init__(self, schema: _int) -> None: ...
@overload
def is_mutable(self) -> _bool: ...
@overload
def is_mutable(self, name: str) -> _bool: ...
def has_argument(self, name: str) -> _bool: ...
# Defined in torch/csrc/utils/init.cpp
class BenchmarkConfig:
num_calling_threads: _int
num_worker_threads: _int
num_warmup_iters: _int
num_iters: _int
profiler_output_path: str
class BenchmarkExecutionStats:
latency_avg_ms: _float
num_iters: _int
class ThroughputBenchmark:
def __init__(self, module: Any) -> None: ...
def add_input(self, *args: Any, **kwargs: Any) -> None: ...
def run_once(self, *args: Any, **kwargs: Any) -> Any: ...
def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ...
# Defined in torch/csrc/Storage.cpp
${legacy_storage_base_hints}
# TODO: where
${legacy_class_hints}
# Defined in torch/csrc/autograd/python_engine.cpp
class _ImperativeEngine:
def queue_callback(self, callback: Callable[[], None]) -> None: ...
def run_backward(self, *args: Any, **kwargs: Any) -> Tuple[Tensor, ...]: ...
def is_checkpoint_valid(self) -> _bool: ...
# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorMeta(type): ...
# Defined in torch/csrc/autograd/python_variable.cpp
class TensorBase(metaclass=_TensorMeta):
requires_grad: _bool
retains_grad: _bool
shape: Size
data: Tensor
names: List[str]
device: _device
dtype: _dtype
layout: _layout
real: Tensor
imag: Tensor
T: Tensor
H: Tensor
mT: Tensor
mH: Tensor
ndim: _int
output_nr: _int
_version: _int
_base: Optional[Tensor]
_cdata: _int
grad_fn: Optional[_Node]
_grad_fn: Any
_grad: Optional[Tensor]
grad: Optional[Tensor]
_backward_hooks: Optional[Dict[_int, Callable[[Tensor], Optional[Tensor]]]]
nbytes: _int
itemsize: _int
_has_symbolic_sizes_strides: _bool
def _view_func_unsafe(
self,
new_base: Tensor,
symint_visitor_fn: Optional[Callable[[_int], _int]] = None,
tensor_visitor_fn: Optional[Callable[[Tensor], Tensor]] = None
):
...
${tensor_method_hints}
_TensorBase = TensorBase
# Defined in torch/csrc/multiprocessing/init.cpp
def _multiprocessing_init() -> None: ...
def _set_thread_name(name: str) -> None: ...
def _get_thread_name() -> str: ...
# Defined in torch/csrc/Module.cpp
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int: ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int: ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int: ...
def _get_accelerator(check: _bool = False) -> _device: ...
# Defined in torch/csrc/mtia/Module.cpp
def _mtia_init() -> None: ...
def _mtia_isBuilt() -> _bool: ...
def _mtia_isInBadFork() -> _bool: ...
def _mtia_deviceSynchronize() -> None: ...
def _mtia_getCurrentStream(device: _int) -> Stream: ...
def _mtia_setCurrentStream(stream: Stream) -> None: ...
def _mtia_getDefaultStream(device: _int) -> Stream: ...
def _mtia_memoryStats(device: _int) -> Dict[str, Any]: ...
def _mtia_getDeviceCapability(device: _int) -> Tuple[_int, _int]: ...
def _mtia_emptyCache() -> None: ...
# Defined in torch/csrc/mps/Module.cpp
def _mps_deviceSynchronize() -> None: ...
def _mps_get_default_generator() -> Generator: ...
def _mps_emptyCache() -> None: ...
def _mps_setMemoryFraction(fraction: _float) -> None: ...
def _mps_currentAllocatedMemory() -> _int: ...
def _mps_driverAllocatedMemory() -> _int: ...
def _mps_recommendedMaxMemory() -> _int: ...
def _mps_is_available() -> _bool: ...
def _mps_is_on_macos_or_newer(major: _int, minor: _int) -> _bool: ...
def _mps_profilerStartTrace(mode: str, wait_until_completed: _bool) -> None: ...
def _mps_profilerStopTrace() -> None: ...
def _mps_acquireEvent(enable_timing: _bool) -> _int: ...
def _mps_releaseEvent(event_id: _int) -> None: ...
def _mps_recordEvent(event_id: _int) -> None: ...
def _mps_waitForEvent(event_id: _int) -> None: ...
def _mps_synchronizeEvent(event_id: _int) -> None: ...
def _mps_queryEvent(event_id: _int) -> _bool: ...
def _mps_elapsedTimeOfEvents(start_event_id: _int, end_event_id: _int) -> _float: ...
# Defined in torch/csrc/cuda/Module.cpp
def _cuda_getCurrentStream(device: _int) -> Tuple: ...
def _cuda_getCurrentRawStream(device: _int) -> _int: ...
def _cuda_getDefaultStream(device: _int) -> Tuple: ...
def _cuda_getCurrentBlasHandle() -> _int: ...
def _cuda_clearCublasWorkspaces() -> None: ...
def _cuda_setDevice(device: _int) -> None: ...
def _cuda_exchangeDevice(device: _int) -> _int: ...
def _cuda_maybeExchangeDevice(device: _int) -> _int: ...
def _cuda_getDevice() -> _int: ...
def _cuda_getDeviceCount() -> _int: ...
def _cuda_set_sync_debug_mode(warn_level: Union[_int, str]) -> None: ...
def _cuda_get_sync_debug_mode() -> _int: ...
def _cuda_sleep(cycles: _int) -> None: ...
def _cuda_synchronize() -> None: ...
def _cuda_ipc_collect() -> None: ...
def _cuda_getArchFlags() -> Optional[str]: ...
def _cuda_init() -> None: ...
def _cuda_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ...
def _cuda_getCompiledVersion() -> _int: ...
def _cuda_cudaHostAllocator() -> _int: ...
def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ...
def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ...
def _cuda_cudaCachingAllocator_enable(val: _bool) -> None: ...
def _cuda_cudaCachingAllocator_set_allocator_settings(env: str) -> None: ...
def _cuda_beginAllocateToPool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ...
def _cuda_beginAllocateCurrentStreamToPool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ...
def _cuda_endAllocateCurrentStreamToPool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ...
def _cuda_releasePool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ...
def _cuda_checkPoolLiveAllocations(device: _int, mempool_id: Tuple[_int, _int], expected_live_allocations: Set) -> _bool: ...
def _cuda_setCheckpointPoolState(device: _int, state: _cuda_CUDAAllocator_AllocatorState, stale_storages: List[_int], storages_to_add_deleters_to: List[_int]) -> None: ...
def _cuda_getMemoryFraction(device: _int) -> _float: ...
def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ...
def _cuda_emptyCache() -> None: ...
def _cuda_memoryStats(device: _int) -> Dict[str, Any]: ...
def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _cuda_resetPeakMemoryStats(device: _int) -> None: ...
def _cuda_memorySnapshot() -> Dict[str, Any]: ...
def _cuda_record_memory_history_legacy(
enabled: _bool,
record_context: _bool,
record_context_cpp: _bool,
alloc_trace_max_entries: _int,
alloc_trace_record_context: _bool,
) -> None: ...
def _cuda_record_memory_history(
enabled: Optional[str],
context: Optional[str],
stacks: str,
max_entries
) -> None: ...
def _cuda_isHistoryEnabled() -> _bool: ...
def _cuda_getAllocatorBackend() -> str: ...
class _cuda_CUDAAllocator_AllocatorState:
pass
def _cuda_getCheckpointState(device: _int, mempool: Tuple[_int, _int]) -> _cuda_CUDAAllocator_AllocatorState: ...
def _set_cached_tensors_enabled(enabled: _bool) -> None: ...
def _add_cached_tensor(t: Tensor) -> None: ...
def _remove_cached_tensor(t: Tensor) -> None: ...
def _tensors_data_ptrs_at_indices_equal(tensors: List[Union[Tensor, _int]], ptrs: List[Optional[_int]], indices: List[_int]) -> _bool: ...
def _construct_CUDA_Tensor_From_Storage_And_Metadata(metadata: dict, storage: Storage) -> Tensor: ...
def _storage_Use_Count(storage_ptr: _int) -> _int: ...
def _set_storage_access_error_msg(t: Tensor, s: str) -> None: ...
def _set_storage_data_ptr_access_error_msg(storage_ptr: _int, s: str) -> None: ...
def _free_And_Remove_DeleterFn(storage_ptr: _int) -> None: ...
def _has_Standard_Deleter(storage_ptr: _int) -> _bool: ...
class _cuda_CUDAAllocator: ...
def _cuda_customAllocator(alloc_fn: _int, free_fn: _int) -> _cuda_CUDAAllocator: ...
def _cuda_changeCurrentAllocator(allocator: _cuda_CUDAAllocator) -> None: ...
def _cuda_getAllocator() -> _cuda_CUDAAllocator: ...
def _cuda_lock_mutex() -> None: ...
def _cuda_unlock_mutex() -> None: ...
def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ...
def _cuda_jiterator_compile_and_launch_kernel(
code_string: str,
kernel_name: str,
return_by_ref: _bool,
num_outputs: _int,
tensors: Tuple,
kwargs: Dict[str, Union[_int, _float, _bool]],
) -> Tensor: ...
def _cuda_get_cudnn_benchmark_limit() -> _int: ...
def _cuda_set_cudnn_benchmark_limit(arg: _int) -> None: ...
def _cuda_get_conv_benchmark_empty_cache() -> _bool: ...
def _cudnn_set_conv_benchmark_empty_cache(enable: _bool) -> None: ...
def _nccl_version() -> _int: ...
def _nccl_version_suffix() -> bytes : ...
def _nccl_unique_id() -> bytes: ...
def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ...
def _nccl_reduce(
input: Sequence[Tensor],
output: Tensor,
root: _int,
op: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_all_reduce(
input: Sequence[Tensor],
output: Sequence[Tensor],
op: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_broadcast(
input: Sequence[Tensor],
root: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_all_gather(
input: Sequence[Tensor],
output: Sequence[Tensor],
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]],
) -> None: ...
def _nccl_reduce_scatter(
input: Sequence[Tensor],
output: Sequence[Tensor],
op: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]],
) -> None: ...
def _rocm_is_backward_pass() -> _bool: ...
def _cuda_tunableop_enable(val: _bool) -> None: ...
def _cuda_tunableop_is_enabled() -> _bool: ...
def _cuda_tunableop_tuning_enable(val: _bool) -> None: ...
def _cuda_tunableop_tuning_is_enabled() -> _bool: ...
def _cuda_tunableop_set_max_tuning_duration(duration: _int) -> None: ...
def _cuda_tunableop_get_max_tuning_duration() -> _int: ...
def _cuda_tunableop_set_max_tuning_iterations(iterations: _int) -> None: ...
def _cuda_tunableop_get_max_tuning_iterations() -> _int: ...
def _cuda_tunableop_set_filename(filename: str, insert_device_ordinal: Optional[_bool]) -> None: ...
def _cuda_tunableop_get_filename() -> str: ...
def _cuda_tunableop_write_file(filename: Optional[str]) -> _bool: ...
def _cuda_tunableop_read_file(filename: Optional[str]) -> _bool: ...
def _cuda_tunableop_write_file_on_exit(val: _bool) -> None: ...
def _cuda_tunableop_get_results() -> Tuple[str, str, str, _float]: ...
def _cuda_tunableop_get_validators() -> Tuple[str, str]: ...
class _CudaDeviceProperties:
name: str
major: _int
minor: _int
multi_processor_count: _int
total_memory: _int
is_integrated: _int
is_multi_gpu_board: _int
max_threads_per_multi_processor: _int
gcnArchName: str
warp_size: _int
uuid: str
L2_cache_size: _int
# Functions related to SDPA
class _SDPAParams:
query: Tensor
key: Tensor
value: Tensor
attn_mask: Optional[Tensor]
dropout: _float
is_causal: _bool
enable_gqa: _bool
def __init__(
self,
query: Tensor,
key: Tensor,
value: Tensor,
attn_mask: Optional[Tensor],
dropout: _float,
is_causal: _bool,
enable_gqa: _bool) -> None: ...
class _SDPBackend(Enum):
ERROR = -1
MATH = 0
FLASH_ATTENTION = 1
EFFICIENT_ATTENTION = 2
CUDNN_ATTENTION = 3
def _is_flash_attention_available() -> _bool: ...
def _can_use_cudnn_attention(params: _SDPAParams, debug: _bool) -> _bool: ...
def _can_use_flash_attention(params: _SDPAParams, debug: _bool) -> _bool: ...
def _can_use_mem_efficient_attention(params: _SDPAParams, debug: _bool) -> _bool: ...
# Defined in torch/csrc/cuda/GdsFile.cpp
def _gds_register_buffer(t: Storage) -> None: ...
def _gds_deregister_buffer(t: Storage) -> None: ...
def _gds_register_handle(fd: _int) -> _int: ...
def _gds_deregister_handle(handle: _int) -> None: ...
def _gds_load_storage(handle: _int, s: Storage, offset: _int) -> None: ...
def _gds_save_storage(handle: _int, s: Storage, offset: _int) -> None: ...
# Defined in torch/csrc/cuda/python_comm.cpp
def _broadcast(tensor: Tensor, devices: List[_int]) -> List[Tensor]: ...
def _broadcast_out(tensor: Tensor, out_tensors: List[Tensor]) -> List[Tensor]: ...
def _broadcast_coalesced(
tensors: List[Tensor],
devices: List[_int],
buffer_size: _int,
) -> List[List[Tensor]]: ...
def _scatter(
tensor: Tensor,
devices: List[_int],
chunk_sizes: Optional[List[_int]],
dim: _int,
streams: Optional[List[Stream]],
) -> List[Tensor]: ...
def _scatter_out(
tensor: Tensor,
out_tensors: List[Tensor],
dim: _int,
streams: Optional[List[Stream]],
) -> List[Tensor]: ...
def _gather(
tensors: List[Tensor],
dim: _int,
destination_index: Optional[_int],
) -> Tensor: ...
def _gather_out(tensors: List[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ...
# Defined in torch/csrc/cuda/Stream.cpp
class _CudaStreamBase(Stream):
stream_id: _int
device_index: _int
device_type: _int
device: _device
cuda_stream: _int
priority: _int
def __new__(
self,
priority: _int = 0,
stream_id: _int = 0,
device_index: _int = 0,
stream_ptr: _int = 0,
) -> _CudaStreamBase: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
def priority_range(self) -> Tuple[_int, _int]: ...
# Defined in torch/csrc/cuda/Event.cpp
class _CudaEventBase:
device: _device
cuda_event: _int
def __new__(
cls,
enable_timing: _bool = False,
blocking: _bool = False,
interprocess: _bool = False,
) -> _CudaEventBase: ...
@classmethod
def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ...
def record(self, stream: _CudaStreamBase) -> None: ...
def wait(self, stream: _CudaStreamBase) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: _CudaEventBase) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
# Defined in torch/csrc/cuda/Graph.cpp
class _CUDAGraph:
def capture_begin(self, pool: Optional[Tuple[_int, _int]] = ..., capture_error_mode: str = "global") -> None: ...
def capture_end(self) -> None: ...
def register_generator_state(self, Generator) -> None: ...
def replay(self) -> None: ...
def reset(self) -> None: ...
def pool(self) -> Tuple[_int, _int]: ...
def enable_debug_mode(self) -> None: ...
def debug_dump(self, debug_path: str) -> None: ...
# Defined in torch/csrc/cuda/MemPool.cpp
class _MemPool:
def __init__(self, allocator: Optional[_cuda_CUDAAllocator] = None, is_user_created: _bool = True) -> None: ...
@property
def id(self) -> Tuple[_int, _int]: ...
@property
def allocator(self) -> Optional[_cuda_CUDAAllocator]: ...
def use_count(self) -> _int: ...
class _MemPoolContext:
def __init__(self, pool: _MemPool) -> None: ...
@staticmethod
def active_pool() -> Optional[_MemPool]: ...
def _cuda_isCurrentStreamCapturing() -> _bool: ...
def _graph_pool_handle() -> Tuple[_int, _int]: ...
# Defined in torch/csrc/xpu/Module.cpp
def _xpu_setDevice(device: _int) -> None: ...
def _xpu_exchangeDevice(device: _int) -> _int: ...
def _xpu_maybeExchangeDevice(device: _int) -> _int: ...
def _xpu_getDevice() -> _int: ...
def _xpu_getDeviceCount() -> _int: ...
def _xpu_getArchFlags() -> Optional[str]: ...
def _xpu_init() -> None: ...
def _xpu_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ...
def _xpu_getCurrentStream(device: _int) -> Tuple: ...
def _xpu_getCurrentRawStream(device: _int) -> _int: ...
def _xpu_synchronize(device: _int) -> None: ...
def _xpu_emptyCache() -> None: ...
def _xpu_memoryStats(device: _int) -> Dict[str, Any]: ...
def _xpu_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _xpu_resetPeakMemoryStats(device: _int) -> None: ...
def _xpu_getMemoryInfo(device: _int) -> Tuple[_int, _int]: ...
class _XpuDeviceProperties:
name: str
platform_name: str
vendor: str
driver_version: str
version: str
max_compute_units: _int
gpu_eu_count: _int
max_work_group_size: _int
max_num_sub_groups: _int
sub_group_sizes: List[_int]
has_fp16: _bool
has_fp64: _bool
has_atomic64: _bool
has_bfloat16_conversions: _bool
has_subgroup_matrix_multiply_accumulate: _bool
has_subgroup_matrix_multiply_accumulate_tensor_float32: _bool
has_subgroup_2d_block_io: _bool
total_memory: _int
gpu_subslice_count: _int
architecture: _int
type: str
# Defined in torch/csrc/xpu/Stream.cpp
class _XpuStreamBase(Stream):
stream_id: _int
device_index: _int
device_type: _int
device: _device
sycl_queue: _int
priority: _int
def __new__(
cls,
priority: _int = 0,
stream_id: _int = 0,
device_index: _int = 0,
device_type: _int = 0,
) -> _XpuStreamBase: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
@staticmethod
def priority_range() -> Tuple: ...
# Defined in torch/csrc/xpu/Event.cpp
class _XpuEventBase:
device: _device
sycl_event: _int
def __new__(cls, enable_timing: _bool = False) -> _XpuEventBase: ...
def record(self, stream: _XpuEventBase) -> None: ...
def wait(self, stream: _XpuStreamBase) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: _XpuEventBase) -> _float: ...
def synchronize(self) -> None: ...
# Defined in torch/csrc/DataLoader.cpp
def _set_worker_signal_handlers(
*arg: Any,
) -> None: ... # THPModule_setWorkerSignalHandlers
def _set_worker_pids(
key: _int,
child_pids: Tuple[_int, ...],
) -> None: ... # THPModule_setWorkerPIDs
def _remove_worker_pids(loader_id: _int) -> None: ... # THPModule_removeWorkerPIDs
def _error_if_any_worker_fails() -> None: ... # THPModule_errorIfAnyWorkerFails
# Defined in torch/csrc/DeviceAccelerator.cpp
def _accelerator_getAccelerator() -> _device: ...
def _accelerator_deviceCount() -> _int: ...
def _accelerator_setDeviceIndex(device_index: _int) -> None: ...
def _accelerator_getDeviceIndex() -> _int: ...
def _accelerator_setStream(Stream) -> None: ...
def _accelerator_getStream(device_index: _int) -> Stream: ...
def _accelerator_synchronizeDevice(device_index: _int) -> None: ...
# Defined in torch/csrc/jit/python/python_tracer.cpp
class TracingState:
def push_scope(self, scope_name: str) -> None: ...
def pop_scope(self) -> None: ...
def current_scope(self) -> str: ...
def set_graph(self, graph: Graph) -> None: ...
def graph(self) -> Graph: ...
def _create_graph_by_tracing(
func: Callable[..., Any],
inputs: Any,
var_name_lookup_fn: Callable[[Tensor], str],
strict: Any,
force_outplace: Any,
self: Any = None,
argument_names: List[str] = [],
) -> Tuple[Graph, Stack]: ...
def _tracer_warn_use_python(): ...
def _get_tracing_state() -> TracingState: ...
# Defined in torch/csrc/jit/python/python_ir.cpp
# Not actually defined in python_ir.cpp, not sure where they are.
class IValue: ...
Stack = List[IValue]
class JitType:
annotation_str: str
def isSubtypeOf(self, other: JitType) -> _bool: ...
def with_dtype(self, dtype: _dtype) -> JitType: ...
def with_sizes(self, sizes: List[Optional[_int]]) -> JitType: ...
def kind(self) -> str: ...
def scalarType(self) -> Optional[str]: ...
def getElementType(self) -> JitType: ...
def dtype(self) -> Optional[_dtype]: ...
class InferredType:
def __init__(self, arg: Union[JitType, str]): ...
def type(self) -> JitType: ...
def success(self) -> _bool: ...
def reason(self) -> str: ...
R = TypeVar("R", bound=JitType)
class Type(JitType):
def str(self) -> _str: ...
def containedTypes(self) -> List[JitType]: ...
def dim(self) -> Optional[_int]: ...
def undefined(self) -> Optional[_bool]: ...
def sizes(self) -> Optional[List[_int]]: ...
def symbol_sizes(self) -> Optional[List[_int]]: ...
def varyingSizes(self) -> Optional[List[Optional[_int]]]: ...
def strides(self) -> Optional[List[_int]]: ...
def contiguous(self) -> Self: ...
def device(self) -> Optional[_device]: ...
def __eq__(self, other: object) -> _bool: ...
__hash__ = None # type: ignore[assignment]
def is_interface_type(self) -> _bool: ...
def requires_grad(self) -> _bool: ...
@property
def annotation_string(self) -> _str: ...
class AnyType(JitType):
@staticmethod
def get() -> AnyType: ...
class NoneType(JitType):
@staticmethod
def get() -> NoneType: ...
class BoolType(JitType):
@staticmethod
def get() -> BoolType: ...
class FloatType(JitType):
@staticmethod
def get() -> FloatType: ...
class ComplexType(JitType):
@staticmethod
def get() -> ComplexType: ...
class IntType(JitType):
@staticmethod
def get() -> IntType: ...
class SymIntType(JitType):
@staticmethod
def get() -> SymIntType: ...
class SymBoolType(JitType):
@staticmethod
def get() -> SymBoolType: ...
class NumberType(JitType):
@staticmethod
def get() -> NumberType: ...
class StringType(JitType):
@staticmethod
def get() -> StringType: ...
class DeviceObjType(JitType):
@staticmethod
def get() -> DeviceObjType: ...
class _GeneratorType(JitType):
@staticmethod
def get() -> _GeneratorType: ...
class StreamObjType(JitType):
@staticmethod
def get() -> StreamObjType: ...
class ListType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
@staticmethod
def ofInts() -> ListType: ...
@staticmethod
def ofTensors() -> ListType: ...
@staticmethod
def ofFloats() -> ListType: ...
@staticmethod
def ofComplexDoubles() -> ListType: ...
@staticmethod
def ofBools() -> ListType: ...
@staticmethod
def ofStrings() -> ListType: ...
class DictType(JitType):
def __init__(self, key: JitType, value: JitType) -> None: ...
def getKeyType(self) -> JitType: ...
def getValueType(self) -> JitType: ...
class TupleType(JitType):
def __init__(self, a: List[Optional[JitType]]) -> None: ...
def elements(self) -> List[JitType]: ...
class UnionType(JitType):
def __init__(self, a: List[JitType]) -> None: ...
class ClassType(JitType):
def __init__(self, qualified_name: str) -> None: ...
class InterfaceType(JitType):
def __init__(self, qualified_name: str) -> None: ...
def getMethod(self, name: str) -> Optional[FunctionSchema]: ...
def getMethodNames(self) -> List[str]: ...
class OptionalType(JitType, Generic[R]):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
@staticmethod
def ofTensor() -> OptionalType: ...
class FutureType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
class AwaitType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
class RRefType(JitType):
def __init__(self, a: JitType) -> None: ...
class EnumType(JitType):
def __init__(
self,
qualified_name: str,
value_type: JitType,
enum_names_values: List[Any],
) -> None: ...
class TensorType(JitType):
@classmethod
def get(cls) -> TensorType: ...
@classmethod
def getInferred(cls) -> TensorType: ...
def with_sizes(self, other: Optional[List[Optional[_int]]]) -> TensorType: ...
def sizes(self) -> Optional[List[_int]]: ...
def varyingSizes(self) -> Optional[List[Optional[_int]]]: ...
def strides(self) -> Optional[List[_int]]: ...
def device(self) -> Optional[_device]: ...
def dim(self) -> _int: ...
def dtype(self) -> Optional[_dtype]: ...
@staticmethod
def create_from_tensor(t: Tensor) -> TensorType: ...
# Defined in torch/csrc/jit/python/python_tree_views.cpp
class SourceRange: ...
class TreeView: ...
class Ident(TreeView):
@property
def name(self) -> str: ...
class ClassDef(TreeView): ...
class Def(TreeView):
def name(self) -> Ident: ...
class Decl(TreeView): ...
# Defined in torch/csrc/distributed/rpc/init.cpp
def _rpc_init() -> _bool: ...
# Defined in torch/csrc/distributed/autograd/init.cpp
def _dist_autograd_init() -> _bool: ...
# Defined in torch/csrc/distributed/c10d/init.cpp
def _c10d_init() -> _bool: ...
# Defined in torch/csrc/distributed/rpc/testing/init.cpp
def _faulty_agent_init() -> _bool: ...
def _register_py_class_for_device(device: str, cls: Any) -> None: ...
# Defined in torch/csrc/Module.cpp
def _current_graph_task_id() -> _int: ...
def _current_autograd_node() -> _Node: ...
def _will_engine_execute_node(node: _Node) -> _bool: ...
def _dispatch_key_set(tensor) -> str: ...
# Defined in torch/csrc/Exceptions.cpp
class OutOfMemoryError(RuntimeError): ...
class _DistError(RuntimeError): ...
class _DistBackendError(RuntimeError): ...
class _DistStoreError(RuntimeError): ...
class _DistNetworkError(RuntimeError): ...
# Defined in torch/csrc/profiler/init.cpp
class CapturedTraceback:
pass
def gather_traceback(python: _bool, script: _bool, cpp: _bool) -> CapturedTraceback: ...
def symbolize_tracebacks(tracebacks: List[CapturedTraceback]) -> List[Dict[str, Any]]: ...
def _load_mobile_module_from_file(filename: str): ...
def _load_mobile_module_from_bytes(bytes_: bytes): ...
def _load_jit_module_from_file(filename: str): ...
def _load_jit_module_from_bytes(bytes_: bytes): ...
def _save_mobile_module(m: LiteScriptModule, filename: str): ...
def _save_jit_module(m: ScriptModule, filename: str, extra_files: Dict[str, Any]): ...
def _save_mobile_module_to_bytes(m: LiteScriptModule) -> bytes: ...
def _save_jit_module_to_bytes(m: ScriptModule, extra_files: Dict[str, Any]) -> bytes: ...
def _get_module_info_from_flatbuffer(data: bytes): ...
def _jit_resolve_packet(op_name: str, *args, **kwargs) -> str: ...
def _swap_tensor_impl(t1: Tensor, t2: Tensor): ...
def _pickle_save(obj: Any) -> bytes: ...
def _pickle_load_obj(bs: bytes) -> Any: ...
# Defined in torch/csrc/jit/runtime/static/init.cpp
def _jit_to_static_module(graph_or_module: Union[Graph,ScriptModule]) -> Any: ...
def _fuse_to_static_module(graph_or_module: Union[Graph,ScriptModule], min_size: _int) -> Any: ...
# Defined in torch/csrc/fx/node.cpp
class _NodeBase:
_erased: _bool
_prev: FxNode
_next: FxNode
class _NodeIter(Iterator):
def __init__(self, root: FxNode, reversed: _bool) -> None: ...
def __iter__(self) -> Iterator[FxNode]: ...
def __next__(self) -> FxNode: ...
|