1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
# flake8: noqa: B950
# fmt: off
# This file was generated by AutoHeuristic. Do not modify it manually!
# To regenerate this file, take a look at the steps in the README.md file inside torchgen/_autoheuristic/mixed_mm/
from typing import List, Optional, Tuple
from torch._inductor.autoheuristic.autoheuristic_utils import (
AHContext,
AHMetadata,
Choice,
)
from torch._inductor.autoheuristic.learnedheuristic_interface import (
LearnedHeuristicDecision,
)
class MixedMMH100(LearnedHeuristicDecision):
def __init__(self) -> None:
self.choices: List[Choice] = []
self.fill_choices()
def check_precondition(self, metadata: AHMetadata, context: AHContext,) -> bool:
return (
metadata.name == self.get_name()
and metadata.shared_memory == 232448
and str(metadata.device_capa) == "(9, 0)"
)
def get_confidence_threshold(self) -> float:
return 0.0
def get_choice(self, idx: int) -> Optional[str]:
if idx < len(self.choices):
return self.choices[idx]
return None
def fill_choices(self) -> None:
self.choices.append('extern_fallback_mixed_mm')
self.choices.append('type=triton_BLOCK-M=128_BLOCK-K=32_BLOCK-N=128_numstages=3_numwarps=4')
self.choices.append('type=triton_BLOCK-M=128_BLOCK-K=32_BLOCK-N=64_numstages=3_numwarps=4')
self.choices.append('type=triton_BLOCK-M=128_BLOCK-K=64_BLOCK-N=128_numstages=5_numwarps=8')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=128_BLOCK-N=128_numstages=4_numwarps=4')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=128_BLOCK-N=32_numstages=2_numwarps=2')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=128_BLOCK-N=32_numstages=5_numwarps=2')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=128_BLOCK-N=64_numstages=5_numwarps=4')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=256_BLOCK-N=128_numstages=3_numwarps=4')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=256_BLOCK-N=128_numstages=5_numwarps=8')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=64_BLOCK-N=128_numstages=5_numwarps=8')
self.choices.append('type=triton_BLOCK-M=16_BLOCK-K=64_BLOCK-N=64_numstages=3_numwarps=4')
self.choices.append('type=triton_BLOCK-M=32_BLOCK-K=128_BLOCK-N=128_numstages=4_numwarps=4')
self.choices.append('type=triton_BLOCK-M=32_BLOCK-K=128_BLOCK-N=32_numstages=2_numwarps=4')
self.choices.append('type=triton_BLOCK-M=32_BLOCK-K=128_BLOCK-N=32_numstages=5_numwarps=4')
self.choices.append('type=triton_BLOCK-M=32_BLOCK-K=32_BLOCK-N=64_numstages=5_numwarps=8')
self.choices.append('type=triton_BLOCK-M=64_BLOCK-K=128_BLOCK-N=128_numstages=4_numwarps=4')
self.choices.append('type=triton_BLOCK-M=64_BLOCK-K=128_BLOCK-N=32_numstages=5_numwarps=4')
self.choices.append('type=triton_BLOCK-M=64_BLOCK-K=128_BLOCK-N=64_numstages=5_numwarps=4')
self.choices.append('type=triton_BLOCK-M=64_BLOCK-K=64_BLOCK-N=128_numstages=3_numwarps=4')
self.choices.append('type=triton_BLOCK-M=64_BLOCK-K=64_BLOCK-N=64_numstages=3_numwarps=8')
def get_name(self) -> str:
return 'mixed_mm'
def get_best_choices(self, context: AHContext) -> Optional[List[Tuple[float, int]]]:
if context.get_value('arith_intensity') <= 15.988086223602295:
if context.get_value('n') <= 25280.0:
if context.get_value('n') <= 1344.0:
if context.get_value('mat1_stride_0') <= 7808.0:
return [(0.581, 7), (0.419, 6)]
else:
if context.get_value('m*n') <= 7680.0:
return [(0.875, 0), (0.125, 6)]
else:
return [(0.833, 0), (0.167, 7)]
else:
if context.get_value('n') <= 8512.0:
if str(context.get_value('mat2_dtype')) != 'torch.int8':
return [(0.763, 6), (0.237, 7)]
else:
return [(0.725, 7), (0.275, 6)]
else:
if str(context.get_value('mat1_dtype')) != 'torch.bfloat16':
return [(0.736, 7), (0.197, 9), (0.048, 6), (0.014, 8), (0.005, 10)]
else:
return [(0.473, 7), (0.398, 6), (0.097, 9), (0.032, 10)]
else:
if context.get_value('n') <= 42254.0:
if context.get_value('n') <= 33856.0:
if context.get_value('k*n') <= 68157440.0:
return [(0.370, 4), (0.370, 5), (0.074, 7), (0.074, 8), (0.074, 11), (0.037, 6)]
else:
return [(0.916, 8), (0.036, 7), (0.036, 9), (0.012, 4)]
else:
return [(0.659, 5), (0.341, 6)]
else:
if context.get_value('k*n') <= 326052992.0:
if context.get_value('n') <= 55232.0:
return [(0.571, 6), (0.321, 7), (0.036, 4), (0.036, 8), (0.036, 9)]
else:
return [(0.506, 6), (0.325, 8), (0.104, 7), (0.039, 5), (0.026, 9)]
else:
if context.get_value('n') <= 57024.0:
return [(0.462, 9), (0.385, 7), (0.115, 6), (0.038, 8)]
else:
return [(0.598, 8), (0.223, 9), (0.107, 6), (0.071, 7)]
else:
if context.get_value('m*n') <= 543936.0:
if str(context.get_value('17LEQmLEQ32')) != 'True':
if context.get_value('m*n') <= 262272.0:
if context.get_value('n') <= 1592.5:
return [(0.860, 0), (0.140, 9)]
else:
return None
else:
if context.get_value('m*k') <= 1294336.0:
return [(0.833, 17), (0.150, 18), (0.017, 15)]
else:
return [(0.917, 17), (0.083, 8)]
else:
if context.get_value('n') <= 12416.0:
if context.get_value('m*n') <= 43008.0:
return None
else:
return [(0.853, 14), (0.147, 9)]
else:
return [(0.625, 12), (0.375, 14)]
else:
if context.get_value('m') <= 32.5:
if context.get_value('mat2_stride_1') <= 6656.0:
if context.get_value('n') <= 69184.0:
return [(0.611, 12), (0.361, 14), (0.028, 13)]
else:
return [(1.000, 12)]
else:
if context.get_value('mat2_stride_1') <= 20864.0:
return [(1.000, 12)]
else:
return [(0.958, 12), (0.042, 9)]
else:
if context.get_value('m*n') <= 1085440.0:
if context.get_value('n') <= 9152.0:
return [(1.000, 18)]
else:
return [(0.780, 18), (0.160, 16), (0.060, 20)]
else:
if context.get_value('m') <= 67.0:
return [(0.650, 16), (0.203, 19), (0.122, 18), (0.016, 20), (0.008, 1)]
else:
return [(0.561, 3), (0.185, 16), (0.096, 20), (0.083, 19), (0.076, 2)]
|