1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
|
# mypy: allow-untyped-defs
""" Triton Implementation of the flex_attention Kernel"""
import logging
import math
from dataclasses import dataclass
from enum import auto, Enum
from typing import Any, List, Optional, Sequence, Tuple, Union
import sympy
import torch
from torch._inductor.virtualized import V
from torch.utils._pytree import tree_map
from .. import config
from ..ir import (
Buffer,
ComputedBuffer,
ExternKernel,
FixedLayout,
FlexibleLayout,
get_fill_order,
InputBuffer,
IRNode,
MutationLayoutSHOULDREMOVE,
Scatter,
StorageBox,
Subgraph,
TensorBox,
)
from ..lowering import (
_full,
check_and_broadcast_indices,
empty,
empty_strided,
expand,
index_output_size_and_inner_fn,
lowerings,
register_lowering,
to_dtype,
)
from ..select_algorithm import autotune_select_algorithm, realize_inputs, TritonTemplate
log = logging.getLogger(__name__)
aten = torch.ops.aten
Expr = sympy.Expr
def construct_strides(
sizes: Sequence[int],
fill_order: Sequence[int],
) -> Sequence[int]:
"""From a list of sizes and a fill order, construct the strides of the permuted tensor."""
# Initialize strides
assert len(sizes) == len(
fill_order
), "Length of sizes must match the length of the fill order"
strides = [0] * len(sizes)
# Start with stride 1 for the innermost dimension
current_stride = 1
# Iterate through the fill order populating strides
for dim in fill_order:
strides[dim] = current_stride
current_stride *= sizes[dim]
return strides
def flex_attention_grid(batch_size, q_heads, num_queries, d_model, meta):
"""How is this kernel parallelized?
We create a grid of (batch_size * num_heads, ceil_div(n_queries, query_block_size), 1)
Each block is responsible for iterating over blocks of keys and values calculating
the final attention output.
"""
import triton
return (triton.cdiv(num_queries, meta["BLOCK_M"]), batch_size * q_heads, 1)
def create_placeholder(
name: str, dtype: torch.dtype, device: torch.device
) -> TensorBox:
"""Creates a placeholder input buffers for producing subgraph_output."""
input_buffer = InputBuffer(name=name, layout=FixedLayout(device, dtype, [], []))
return TensorBox.create(input_buffer)
def maybe_realize(args: List[Optional[IRNode]]):
"""Accepts a list of optional IRNodes and returns a list of realized IRNodes"""
return tree_map(
lambda x: (
realize_inputs(x)
if x is not None and not isinstance(x, sympy.Symbol)
else x
),
args,
)
def get_float32_precision():
if torch.get_float32_matmul_precision() == "highest" or torch.version.hip:
return "'ieee'"
else:
return "'tf32'"
def zeros_and_scatter_lowering(shape: List[int], indices, values):
# Always accumulate into fp32 then cast
grad = _full(0, values.get_device(), torch.float32, shape)
assert isinstance(grad, TensorBox)
grad.realize()
x_size = grad.get_size()
values = to_dtype(values, grad.get_dtype())
indices_loaders = [i.make_loader() if i is not None else None for i in indices]
indices, tensor_indices = check_and_broadcast_indices(indices, grad.get_device())
# We can use the first one since they are all required to be the same size
tensor_size = list(indices[tensor_indices[0]].get_size())
indexed_size = [x_size[i] for i in range(len(indices))]
expected_vals_size, inner_fn = index_output_size_and_inner_fn(
x_size,
indices,
tensor_indices,
tensor_size,
indices_loaders,
indexed_size,
None,
check=True,
)
values = expand(values, expected_vals_size)
device = grad.get_device()
assert device is not None
scatter = Scatter(
device=device,
dtype=grad.get_dtype(),
inner_fn=values.make_loader(),
ranges=expected_vals_size, # iter_ranges,
output_indexer=inner_fn,
scatter_mode="atomic_add",
)
buffer = ComputedBuffer(
name=grad.data.data.name, # type: ignore[attr-defined]
layout=MutationLayoutSHOULDREMOVE(grad),
data=scatter,
)
return buffer
SubgraphResults = Union[List[Optional[ComputedBuffer]], Optional[ComputedBuffer]]
def build_subgraph_buffer(args: List[TensorBox], subgraph: Subgraph) -> SubgraphResults:
"""This function's goal is to take in the required args and produce the subgraph buffer
The subgraph buffer is a ComputedBuffer that will be inlined into the triton template
Args:
args: The args that are passed into the subgraph. Contains both fixed and lifted inputs.
subgraph: The Subgraph ir for which to produce the output node
"""
from ..subgraph_lowering import PointwiseSubgraphLowering
pw_subgraph = PointwiseSubgraphLowering(
subgraph.graph_module,
root_graph_lowering=V.graph,
allowed_mutations={torch.ops.flex_lib.zeros_and_scatter.default},
additional_lowerings={
torch.ops.flex_lib.zeros_and_scatter.default: zeros_and_scatter_lowering
},
)
with V.set_graph_handler(pw_subgraph): # type: ignore[arg-type]
pw_subgraph.run(*args)
# Since we are allowing mutations/buffer creation, we need to register any fresh buffers
# creating during the pointwise subgraph lowering
if len(pw_subgraph.buffers) > 0:
for buffer in pw_subgraph.buffers:
V.graph.register_buffer(buffer)
def convert_output_node_to_buffer(output_buffer) -> Optional[ComputedBuffer]:
if output_buffer is None:
return None
if isinstance(output_buffer, ComputedBuffer):
# These nodes are coming from the output of zeros_and_scatter
return output_buffer
assert isinstance(output_buffer, TensorBox), (
"The output node for flex attention's subgraph must be a TensorBox, but got: ",
type(output_buffer),
)
assert isinstance(output_buffer.data, StorageBox), (
"The output node for the flex attention subgraph must be a StorageBox, but got: ",
type(output_buffer),
)
subgraph_buffer = ComputedBuffer(
name=None,
layout=FlexibleLayout(
device=output_buffer.data.get_device(),
dtype=output_buffer.data.get_dtype(),
size=output_buffer.data.get_size(),
),
data=output_buffer.data.data, # type: ignore[arg-type]
)
return subgraph_buffer
return tree_map(convert_output_node_to_buffer, pw_subgraph.graph_outputs)
# Inner Triton functions shared by flex_attention & split-k decoding kernels.
compute_next_offset_func = r"""
@triton.jit
def get_offset_for_next_block(
loop_iter, col_indices, total_blocks,
SPARSE_BLOCK, SPARSE_BLOCK_MULTIPLE, BLOCK,
BLOCKS_ARE_CONTIGUOUS: tl.constexpr
):
if BLOCKS_ARE_CONTIGUOUS:
return BLOCK
cur_block_idx = loop_iter // SPARSE_BLOCK_MULTIPLE
cur_block = tl.load(col_indices + cur_block_idx, eviction_policy="evict_last")
next_block = tl.load(col_indices + cur_block_idx + 1, eviction_policy="evict_last", mask=cur_block_idx + 1 < total_blocks)
needs_jump = (loop_iter + 1) % SPARSE_BLOCK_MULTIPLE == 0
jump_to_block = (next_block - cur_block ) * SPARSE_BLOCK - (SPARSE_BLOCK_MULTIPLE - 1) * BLOCK
offset = jump_to_block * needs_jump + (1 - needs_jump) * BLOCK
return offset
"""
get_bounded_indices_func = r"""
@triton.jit
def get_bounded_indices(indices, max_len=None):
return indices % max_len if max_len is not None else indices
"""
compute_flex_attention = r"""
{{def_kernel("Q", "K", "V", "LSE", "KV_NUM_BLKS", "KV_IDX", "FULL_KV_NUM_BLKS", "FULL_KV_IDX")}}
# Sub notation for this kernel:
#
# Q: Query, K: Key, V: Value
# M: Number of queries, N: Number of keys/values, D: Model dimension
# QK_HEAD_DIM: The dimension of the query and key embeddings
# V_HEAD_DIM: The dimension of the value embeddings
# z: Batch size, h: Number of heads, m: Number of queries per head, k: Number of keys per head
# GQA_SHARED_HEADS: number of query heads sharing one kv head in GQA setups.
#
# The following FULL_* and PARTIAL_* is defined in the block sparse mask grid, rather than the thread block grid.
# KV_NUM_BLKS: The number of KV blocks (that may or may not require masking) for each query.
# KV_IDX: The indices of KV blocks (that may or may not require masking) for each query.
# FULL_KV_NUM_BLKS: The number of fully unmasked KV blocks (so we don't need masking) for each query.
# FULL_KV_IDX: The indices of fully unmasked KV blocks (so we don't need masking) for each query.
#
# OUTPUT_LOGSUMEXP: We only need to store the logsumexp if we require grad
#
# (Modifiable) Performance tuning options
# BLOCK_M: The thread block size across the seqlen dim of Q.
# BLOCK_N: Iterate over BLOCK_N across the seqlen dim of K/V in each thread block.
# The below are kernel options that can be applied for certain score_mods,
# or involve a numerics vs. perf tradeoff
# PRESCALE_QK: Whether to pre-scale QK by 1/sqrt(d) and change of base. Has
# about 20% more numerical error, but slightly faster.
# ROWS_GUARANTEED_SAFE: Is it guaranteed that at least one value in each row
# is not masked out? If so, we can skip an extra safety check
# BLOCKS_ARE_CONTIGUOUS: Is it guaranteed that all blocks in the mask are
# contiguous? If so, we don't need to do an indirect jump for every block
tl.static_assert(SPARSE_Q_BLOCK_SIZE >= BLOCK_M and SPARSE_Q_BLOCK_SIZE % BLOCK_M == 0)
tl.static_assert(SPARSE_KV_BLOCK_SIZE >= BLOCK_N and SPARSE_KV_BLOCK_SIZE % BLOCK_N == 0)
# Define strides of inputs
stride_qz, stride_qh, stride_qm, stride_qk = {{stride("Q")}}
stride_kz, stride_kh, stride_kn, stride_kk = {{stride("K")}}
stride_vz, stride_vh, stride_vn, stride_vk = {{stride("V")}}
ZQ = {{size("Q", 0)}}
HQ = {{size("Q", 1)}}
Q_LEN = {{size("Q", 2)}}
ZKV = {{size("K", 0)}}
KV_LEN = {{size("K", 2)}}
MATMUL_PRECISION = Q.dtype.element_ty
q_start = tl.program_id(0)
off_zq = tl.program_id(1) // HQ
off_hq = tl.program_id(1) % HQ
# We support two cases for batch dimension. a) (ZKV == ZQ) where off_zkv = off_zq.
# b) (ZKV == 1 and ZQ > 1) where KV is broadcasted along the batch dimension and off_zkv=0.
off_zkv = off_zq % ZKV
off_hkv = off_hq // GQA_SHARED_HEADS
off_g = off_hq % GQA_SHARED_HEADS
q_offset = off_zq * stride_qz + off_hq * stride_qh
k_offset = off_zkv * stride_kz + off_hkv * stride_kh
v_offset = off_zkv * stride_vz + off_hkv * stride_vh
Q = Q + q_offset
K = K + k_offset
V = V + v_offset
SPARSE_Z = {{size("KV_NUM_BLKS", 0)}}
SPARSE_HQ = {{size("KV_NUM_BLKS", 1)}}
sparse_idx_z = off_zq % SPARSE_Z
sparse_idx_hq = off_hq % SPARSE_HQ
SPARSE_Q_MULTIPLE: tl.constexpr = (SPARSE_Q_BLOCK_SIZE // BLOCK_M)
SPARSE_KV_MULTIPLE: tl.constexpr = (SPARSE_KV_BLOCK_SIZE // BLOCK_N)
stride_kv_num_blks_h = {{stride("KV_NUM_BLKS", 1)}}
stride_kv_idx_h = {{stride("KV_IDX", 1)}}
stride_kv_idx_m = {{stride("KV_IDX", 2)}}
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, V_HEAD_DIM], dtype=tl.float32)
offs_m = q_start * BLOCK_M + tl.arange(0, BLOCK_M)
# KV_IDX and KV_NUM_BLKS are always contiguous.
sparse_hz_offset = sparse_idx_z * SPARSE_HQ + sparse_idx_hq
sparse_kv_num_blks_offset = sparse_hz_offset * stride_kv_num_blks_h + q_start // SPARSE_Q_MULTIPLE
sparse_kv_idx_offset = sparse_hz_offset * stride_kv_idx_h + (q_start // SPARSE_Q_MULTIPLE) * stride_kv_idx_m # noqa: B950
Q_block_ptr = tl.make_block_ptr(
base=Q,
shape=(Q_LEN, QK_HEAD_DIM),
strides=(stride_qm, stride_qk),
offsets=(q_start * BLOCK_M, 0),
block_shape=(BLOCK_M, QK_HEAD_DIM),
order=(1, 0)
)
# load q: it stays in SRAM throughout the inner loop.
if IS_DIVISIBLE:
q = tl.load(Q_block_ptr)
else:
# boundary check is not free, so we only do it when necessary.
q = tl.load(Q_block_ptr, boundary_check=(0,), padding_option = "zero")
# ~~~~~~~~~~~~~~ normal blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# We don't know anything "special" about these blocks, so we need to apply
# both score_mod and mask_mod to it
kv_indices = KV_IDX + sparse_kv_idx_offset
kv_start = tl.load(kv_indices) * SPARSE_KV_BLOCK_SIZE # first kv block we're loading
kv_num_blocks = tl.load(KV_NUM_BLKS + sparse_kv_num_blks_offset)
block_n_end = tl.minimum(kv_num_blocks * SPARSE_KV_MULTIPLE, tl.maximum(tl.cdiv(KV_LEN, BLOCK_N), 1))
K_block_ptr = tl.make_block_ptr(
base=K,
shape=(QK_HEAD_DIM, KV_LEN),
strides=(stride_kk, stride_kn),
offsets=(0, kv_start),
block_shape=(QK_HEAD_DIM, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V,
shape=(KV_LEN, V_HEAD_DIM),
strides=(stride_vn, stride_vk),
offsets=(kv_start, 0),
block_shape=(BLOCK_N, V_HEAD_DIM),
order=(1, 0)
)
offs_n = kv_start + tl.arange(0, BLOCK_N)
acc, l_i, m_i = forward_inner(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
acc, l_i, m_i,
off_zq, off_hq, offs_m[:, None], offs_n[None, :],
kv_indices, kv_num_blocks,
0, block_n_end,
MATMUL_PRECISION,
IS_FULL_BLOCKS=False,
)
# ~~~~~~~~~~~~~~ "full" blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# We know these blocks are guaranteed to be "full", so we don't need to
# apply mask_mod to them - only score_mod
if HAS_FULL_BLOCKS:
# FULL_KV_IDX and FULL_KV_NUM_BLKS are always contiguous.
kv_indices = FULL_KV_IDX + sparse_kv_idx_offset
kv_start = tl.load(kv_indices) * SPARSE_KV_BLOCK_SIZE # first kv block we're loading
kv_num_blocks = tl.load(FULL_KV_NUM_BLKS + sparse_kv_num_blks_offset)
block_n_end = tl.minimum(kv_num_blocks * SPARSE_KV_MULTIPLE, tl.maximum(tl.cdiv(KV_LEN, BLOCK_N), 1))
K_block_ptr = tl.make_block_ptr(
base=K,
shape=(QK_HEAD_DIM, KV_LEN),
strides=(stride_kk, stride_kn),
offsets=(0, kv_start),
block_shape=(QK_HEAD_DIM, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V,
shape=(KV_LEN, V_HEAD_DIM),
strides=(stride_vn, stride_vk),
offsets=(kv_start, 0),
block_shape=(BLOCK_N, V_HEAD_DIM),
order=(1, 0)
)
offs_n = kv_start + tl.arange(0, BLOCK_N)
acc, l_i, m_i = forward_inner(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
acc, l_i, m_i,
off_zq, off_hq, offs_m[:, None], offs_n[None, :],
kv_indices, kv_num_blocks,
0, block_n_end,
MATMUL_PRECISION,
IS_FULL_BLOCKS=True,
)
# [Note] Handle fully masked out rows:
# Li will be the sum(e^(-inf)) == 0.0 for masked out rows, mi will be -inf.
# We set Li to 1.0 which will result in lse/out = 0.0 | after the log(li) + mi(0.0) step
l_i = tl.where(l_i == 0.0, 1, l_i)
acc = acc / l_i[:, None]
idx_zq = tl.program_id(1) // HQ
idx_hq = tl.program_id(1) % HQ
idx_m = offs_m[:, None]
idx_d = tl.arange(0, V_HEAD_DIM)[None, :]
mask = idx_m < Q_LEN
{{store_output(("idx_zq", "idx_hq", "idx_m", "idx_d"), "acc", "mask")}}
if OUTPUT_LOGSUMEXP:
off_hz = tl.program_id(1)
l_ptrs = LSE + off_hz * Q_LEN + offs_m
lse = m_i + tl.math.log2(l_i)
if IS_DIVISIBLE:
tl.store(l_ptrs, lse)
else:
tl.store(l_ptrs, lse, mask=offs_m < Q_LEN)
"""
compute_forward_inner = r"""
@triton.jit
def forward_inner(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
# accumulated values
acc, l_i, m_i,
# Offsets used as inputs to score_mod & mask_mod
# of size [BLOCK_M, BLOCK_N] or scalar.
off_z, off_h, offs_m, offs_n,
# blocksparse data
kv_indices, kv_num_blocks,
# start kv and end kv block
block_n_start, block_n_end,
MATMUL_PRECISION,
IS_FULL_BLOCKS,
):
# Redefines all kernel parameters (BLOCK_M, etc.) so we don't need to plumb them all through
{{gen_defines() | indent_except_first(1)}}
SPARSE_KV_MULTIPLE: tl.constexpr = (SPARSE_KV_BLOCK_SIZE // BLOCK_N)
RCP_LN2: tl.constexpr = 1.44269504
if PRESCALE_QK:
q = (q * SM_SCALE * RCP_LN2).to(MATMUL_PRECISION)
# loop over k, v and update accumulator until block_n_end
for start_n in range(block_n_start, block_n_end):
if IS_DIVISIBLE:
acc, l_i, m_i = forward_block_mn(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
# accumulated values
acc, l_i, m_i,
# Offsets
off_z, off_h, offs_m, offs_n,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS,
)
else:
# Benchmark shows even we applied mod & mask to each block for non divisible seqlen,
# it's on par or slightly faster than only applying to the last block in fwd.
# However, we choose different strategy for bwd, where we only apply mod & mask
# to the last block because it's faster a lot.
acc, l_i, m_i = forward_block_mn(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
# accumulated values
acc, l_i, m_i,
# Offsets
off_z, off_h, offs_m, offs_n,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS, CHECK_BLOCK_BOUNDARY=True,
)
# update pointers
offset = get_offset_for_next_block(
start_n, kv_indices, kv_num_blocks,
SPARSE_KV_BLOCK_SIZE, SPARSE_KV_MULTIPLE, BLOCK_N, BLOCKS_ARE_CONTIGUOUS
)
V_block_ptr = tl.advance(V_block_ptr, (offset, 0))
K_block_ptr = tl.advance(K_block_ptr, (0, offset))
offs_n = offs_n + offset
return acc, l_i, m_i
"""
compute_forward_block_mn = r"""
@triton.jit
def forward_block_mn(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
# accumulated values
acc, l_i, m_i,
# Offsets
off_z, off_h, offs_m, offs_n,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS, CHECK_BLOCK_BOUNDARY=False,
):
# Redefines all kernel parameters (BLOCK_M, etc.) so we don't need to plumb them all through
{{gen_defines() | indent_except_first(1)}}
# -- load k --
if IS_DIVISIBLE:
k = tl.load(K_block_ptr)
else:
k = tl.load(K_block_ptr, boundary_check=(1,), padding_option = "zero")
# -- compute qk ---
qk = tl.dot(q, k, input_precision=FLOAT32_PRECISION) # TODO: use cuda matmul when q_len <= 2.
if not PRESCALE_QK:
qk *= SM_SCALE
# ~~~~~~~~~~~~~~~~~~~ Apply score modification ~~~~~~~~~~~~~~~~~~~
if CHECK_BLOCK_BOUNDARY:
# If this is the last block of a non divisible seqlen, we still need to load [BLOCK_M, BLOCK_N] elements,
# which is larger than the actual number of elements. To avoid access memory out of bound,
# we need to mask out the elements that are out of Q_LEN & KV_LEN.
m = offs_m % Q_LEN
n = offs_n % KV_LEN
else:
m = offs_m
n = offs_n
{{ modification(
subgraph_number=0,
output_name="post_mod_scores",
score="qk",
b="off_z",
h="off_h",
m="m",
n="n",
out="qk"
) | indent_except_first(1) }}
if CHECK_BLOCK_BOUNDARY:
# Mask out the elements that are out of the KV_LEN for non divisible seqlen.
post_mod_scores = tl.where(offs_n < KV_LEN, post_mod_scores, float("-inf"))
if not IS_FULL_BLOCKS:
{{ modification(
subgraph_number=1,
output_name="mask_mod_output",
score="qk",
b="off_z",
h="off_h",
m="m",
n="n",
) | indent_except_first(2) }}
if CHECK_BLOCK_BOUNDARY:
mask_mod_output = tl.where(offs_n < KV_LEN, mask_mod_output, False)
# apply mask for partially unmasked blocks
post_mod_scores = tl.where(mask_mod_output, post_mod_scores, float("-inf"))
# TODO: In the case that score_mod is linear, this can be LICMed
if not PRESCALE_QK:
post_mod_scores *= RCP_LN2
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# -- compute scaling constant ---
m_ij = tl.maximum(m_i, tl.max(post_mod_scores, 1))
if not ROWS_GUARANTEED_SAFE:
masked_out_rows = (m_ij == float("-inf"))
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
else:
m_ij_masked = m_ij
alpha = tl.math.exp2(m_i - m_ij_masked)
p = tl.math.exp2(post_mod_scores - m_ij_masked[:, None])
# NB: l_i update is pulled up here since it's a bit faster
# NB: For headdim=256, it's faster to move it back down to after m_i =
# m_ij
l_i = l_i * alpha + tl.sum(p, 1)
# # -- scale and update acc --
acc = acc * alpha[:, None]
if IS_DIVISIBLE:
v = tl.load(V_block_ptr)
else:
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option = "zero")
acc = tl.dot(p.to(MATMUL_PRECISION), v, acc, input_precision=FLOAT32_PRECISION)
# -- update m_i
m_i = m_ij
return acc, l_i, m_i
"""
flex_attention_template = TritonTemplate(
name="flex_attention",
grid=flex_attention_grid,
source=compute_flex_attention
+ compute_forward_inner
+ compute_next_offset_func
+ compute_forward_block_mn,
)
def _use_flex_decoding(query, kernel_options):
# Decide which kernel to use, return true if use flex decoding kernel.
return (
not kernel_options.get("FORCE_USE_FLEX_ATTENTION", False)
) and V.graph.sizevars.evaluate_expr(sympy.Lt(query.get_size()[-2], 128))
_h100_default_config = {
(torch.float32, 64): (128, 32, 4, 3),
(torch.float32, 128): (32, 64, 4, 3),
(torch.float32, 256): (32, 32, 4, 3),
(torch.bfloat16, 64): (128, 128, 4, 3),
(torch.bfloat16, 128): (128, 64, 8, 3),
(torch.bfloat16, 256): (64, 32, 4, 3),
(torch.float16, 64): (128, 128, 4, 3),
(torch.float16, 128): (128, 128, 8, 3),
(torch.float16, 256): (64, 32, 4, 3),
}
_a100_default_config = {
(torch.float32, 64): (128, 32, 4, 3),
(torch.float32, 128): (128, 32, 4, 3),
(torch.float32, 256): (64, 16, 4, 3),
(torch.bfloat16, 64): (128, 64, 4, 3),
(torch.bfloat16, 128): (128, 64, 8, 3),
(torch.bfloat16, 256): (32, 64, 4, 3),
(torch.float16, 64): (128, 64, 4, 3),
(torch.float16, 128): (128, 64, 8, 3),
(torch.float16, 256): (32, 64, 4, 3),
}
_rocm_default_config = {
(torch.float32, 64): (128, 32, 4, 1),
(torch.float32, 128): (128, 32, 4, 1),
(torch.float32, 256): (64, 16, 4, 1),
(torch.bfloat16, 64): (128, 64, 8, 1),
(torch.bfloat16, 128): (128, 64, 8, 1),
(torch.bfloat16, 256): (32, 64, 8, 1),
(torch.float16, 64): (128, 64, 8, 1),
(torch.float16, 128): (128, 64, 8, 1),
(torch.float16, 256): (32, 64, 4, 1),
}
class Mode(Enum):
fwd = auto()
bwd = auto()
def _get_rocm_config(query, mode: Mode) -> Tuple[int, int, int, int]:
dtype = query.get_dtype()
head_dim = query.get_size()[-1]
fwd_config = None
if mode == Mode.fwd:
if head_dim <= 256:
if dtype == torch.float32:
fwd_config = (64, 64, 4, 1)
else:
fwd_config = (128, 64, 8, 1)
fwd_config = _rocm_default_config.get((dtype, head_dim), fwd_config)
else: # modest hardware or extremely large head_dim
if dtype == torch.float32:
fwd_config = (32, 16, 4, 1)
else:
fwd_config = (64, 32, 4, 1)
return fwd_config
else: # bwd
assert mode == Mode.bwd
if dtype == torch.float32:
return (16, 16, 4, 1)
elif head_dim <= 256:
if head_dim == 64:
return (64, 64, 4, 1)
elif head_dim == 128:
return (64, 128, 8, 1)
else:
return (64, 64, 4, 1)
else: # modest hardware or extremely large head_dim
return (16, 16, 4, 1)
def _get_nv_config(query, mode: Mode) -> Tuple[int, int, int, int]:
dtype = query.get_dtype()
head_dim = query.get_size()[-1]
fwd_config = None
capability = torch.cuda.get_device_capability()
if mode == Mode.fwd:
if head_dim <= 256:
if dtype == torch.float32:
fwd_config = (64, 64, 4, 3)
else:
fwd_config = (128, 64, 4, 3)
if capability >= (9, 0):
fwd_config = _h100_default_config.get((dtype, head_dim), fwd_config)
elif capability >= (8, 0):
fwd_config = _a100_default_config.get((dtype, head_dim), fwd_config)
else: # modest hardware or extremely large head_dim
if dtype == torch.float32:
fwd_config = (32, 16, 4, 3)
else:
fwd_config = (64, 32, 4, 3)
return fwd_config
else: # bwd
assert mode == Mode.bwd
if dtype == torch.float32:
return (16, 16, 4, 1)
elif head_dim <= 256 and capability >= (9, 0): # H100
if head_dim == 64:
return (64, 64, 4, 3)
elif head_dim == 128:
return (64, 128, 8, 3)
else:
return (64, 64, 4, 2)
elif capability >= (8, 0):
if head_dim >= 64:
return (32, 128, 4, 3)
elif head_dim == 128:
# SM86/89 have smaller shared memory sizes
num_stages = 3 if capability[-1] == 0 else 2
return (64, 64, 4, num_stages)
else:
return (64, 64, 4, 2)
else: # modest hardware or extremely large head_dim
return (16, 16, 4, 1)
def _get_default_config_fwd(query) -> Tuple[int, int, int, int]:
if torch.version.hip is None:
return _get_nv_config(query, mode=Mode.fwd)
else:
return _get_rocm_config(query, mode=Mode.fwd)
def _get_default_config_bwd(query) -> Tuple[int, int, int, int]:
if torch.version.hip is None:
return _get_nv_config(query, mode=Mode.bwd)
else:
return _get_rocm_config(query, mode=Mode.bwd)
def create_num_blocks_fake_generator(sparse_indices):
# The idea here is that we need to create a real tensor with real data
# that's representative for benchmarking.
# For example, returning all zeros for the `kv_num_blocks` input would mean
# that we are computing 0 blocks for each row, which would provide bogus
# autotuning results.
#
# In this case, we choose to use min(16, max_block) blocks, because I
# (Horace) think it'll probably result in pretty representative performance.
# If it's too short then prefetching won't help. If it's too long then
# autotuning will take longer for no good reason.
def create_num_blocks_fake(x) -> torch.Tensor:
num_blocks_for_autotuning = min(16, sparse_indices.shape[-1])
return torch.full(
x.get_size(),
int(num_blocks_for_autotuning),
dtype=x.get_dtype(),
device=x.get_device(),
)
return create_num_blocks_fake
def create_indices_fake(x) -> torch.Tensor:
indices = torch.arange(
0, int(x.get_size()[-1]), dtype=x.get_dtype(), device=x.get_device()
)
indices = indices.expand(x.get_size()).contiguous()
return indices
from torch._inductor.kernel.flex_decoding import create_flex_decoding_kernel
from ..codegen.cpp_flex_attention_template import CppFlexAttentionTemplate
def check_cpu_supported():
import os
import sys
requires_avx2_on_cpu = (
torch.cpu._is_avx2_supported() and os.getenv("ATEN_CPU_CAPABILITY") != "default"
)
supported = (
requires_avx2_on_cpu
and not torch.xpu.is_available()
and not sys.platform == "darwin"
)
return supported
def lower_cpu(
query,
key,
value,
subgraph,
block_mask,
scale,
kernel_options,
score_mod_other_buffers,
mask_mod_other_buffers,
):
(
_, # q_length
_, # kv_length
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
SPARSE_Q_BLOCK_SIZE,
SPARSE_KV_BLOCK_SIZE,
mask_graph,
) = block_mask
if kernel_options["OUTPUT_LOGSUMEXP"]:
raise NotImplementedError(
"torch.compile on CPU only supports inference and `return_lse` is not supported yet."
)
if not check_cpu_supported():
raise NotImplementedError(
"torch.compile on current platform is not supported for CPU."
)
fake_buffers: List[Buffer] = [] # noqa: F821
placeholder_inps = [
create_placeholder(name, dtype, query.get_device())
for name, dtype in [
("score", torch.float),
("b", torch.int64),
("h", torch.int64),
("q_idx", torch.int64),
("kv_idx", torch.int64),
]
]
subgraph_buffer = build_subgraph_buffer(
placeholder_inps + list(score_mod_other_buffers), subgraph
)
if subgraph_buffer is not None:
if isinstance(subgraph_buffer, list):
for _buf in subgraph_buffer:
if _buf is not None:
_buf.freeze_layout()
else:
subgraph_buffer.freeze_layout()
mask_graph_placeholder_inps = [
create_placeholder(name, dtype, query.get_device())
for name, dtype in [
("b", torch.int64),
("h", torch.int64),
("q_idx", torch.int64),
("kv_idx", torch.int64),
]
]
mask_graph_buffer = build_subgraph_buffer(
mask_graph_placeholder_inps + list(mask_mod_other_buffers), mask_graph
)
buffer_list = (
placeholder_inps
+ list(score_mod_other_buffers)
+ mask_graph_placeholder_inps
+ list(mask_mod_other_buffers)
)
for item in buffer_list:
if isinstance(item, TensorBox):
fake_buffers.append(item.data.data) # type: ignore[attr-defined]
(
query,
key,
value,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
) = maybe_realize(
[
query,
key,
value,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
]
)
if len({query.get_name(), key.get_name(), value.get_name()}) != 3:
raise NotImplementedError(
"Unsupported for now if query, key, value are the same buffer."
)
if query.get_dtype() not in [torch.float, torch.bfloat16]:
raise NotImplementedError(
"`torch.float` and `torch.bfloat16` are supported in FlexAttention for CPU device. "
f"Found input tensors are `{query.get_dtype()}`."
)
score_mod_other_buffers = maybe_realize(score_mod_other_buffers)
mask_mod_other_buffers = maybe_realize(mask_mod_other_buffers)
Bq, Hq, seq_len_q, qk_head_dim = query.get_size()
Bkv, Hkv, seq_len_kv, v_head_dim = value.get_size()
B = Bq
# Construct output layout with strides matching the query.
out_size = [B, Hq, seq_len_q, v_head_dim]
fill_order = get_fill_order(query.get_stride())
out_strides = construct_strides(out_size, fill_order)
layout = FixedLayout(
query.get_device(),
query.get_dtype(),
[B, Hq, seq_len_q, v_head_dim],
stride=[sympy.sympify(s) for s in out_strides],
)
_choices: List[Any] = []
input_nodes = [query, key, value, kv_num_blocks, kv_indices]
if not full_kv_num_blocks:
no_full_kv_block = True
else:
no_full_kv_block = False
input_nodes += [full_kv_num_blocks]
has_other_buffer = False
kernel_input_name_to_buffer = {}
if score_mod_other_buffers or mask_mod_other_buffers:
has_other_buffer = True
for prefix, buffers in [
("score_others", score_mod_other_buffers),
("mask_others", mask_mod_other_buffers),
]:
kernel_input_name_to_buffer.update(
{f"{prefix}_{i}": buf for i, buf in enumerate(buffers)}
)
input_nodes += [
value
for value in kernel_input_name_to_buffer.values()
if not isinstance(value, sympy.Symbol)
]
skip_mask_score = kernel_options.get("SKIP_MASK_SCORE", False)
# Mark SPARSE_KV_BLOCK_SIZE & SPARSE_Q_BLOCK_SIZE as static shapes and add guards.
SPARSE_KV_BLOCK_SIZE = V.graph.sizevars.evaluate_static_shape(SPARSE_KV_BLOCK_SIZE)
SPARSE_Q_BLOCK_SIZE = V.graph.sizevars.evaluate_static_shape(SPARSE_Q_BLOCK_SIZE)
assert V.graph.sizevars.evaluate_expr(
sympy.Le(seq_len_q, sympy.Mul(kv_indices.get_size()[-2], SPARSE_Q_BLOCK_SIZE))
), "Q seqlen must be smaller than the block_mask size in the Q dimension, considering pass a larger block_mask."
assert V.graph.sizevars.evaluate_expr(
sympy.Le(seq_len_kv, sympy.Mul(kv_indices.get_size()[-1], SPARSE_KV_BLOCK_SIZE))
), "KV seqlen must be smaller than the block_mask size in the KV dimension, considering pass a larger block_mask."
CppFlexAttentionTemplate.add_choices(
choices=_choices,
input_nodes=input_nodes,
layout=layout,
scale=scale,
score_mod=None if skip_mask_score else subgraph_buffer,
mask_mod=None if skip_mask_score else mask_graph_buffer,
kv_block_size=SPARSE_KV_BLOCK_SIZE,
has_other_buffer=has_other_buffer,
no_full_kv_block=no_full_kv_block,
fake_buffers=fake_buffers,
len_score_other=len(score_mod_other_buffers),
len_mask_other=len(mask_mod_other_buffers),
kernel_input_name_to_buffer=kernel_input_name_to_buffer,
)
inputs_for_autotuning = [
query,
key,
value,
]
res = autotune_select_algorithm(
"flex_attention",
_choices,
inputs_for_autotuning,
layout,
)
return (res,)
# TODO: We probably also need a layout constraint?
@register_lowering(torch.ops.higher_order.flex_attention, type_promotion_kind=None)
def flex_attention(
query,
key,
value,
subgraph,
block_mask,
scale,
kernel_options,
score_mod_other_buffers,
mask_mod_other_buffers,
):
if query.get_device().type == "cpu":
return lower_cpu(
query,
key,
value,
subgraph,
block_mask,
scale,
kernel_options,
score_mod_other_buffers,
mask_mod_other_buffers,
)
# below is cuda path if device is not cpu
(
_, # q_length
_, # kv_length
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
SPARSE_Q_BLOCK_SIZE,
SPARSE_KV_BLOCK_SIZE,
mask_graph,
) = block_mask
placeholder_inps = [
create_placeholder(name, dtype, query.get_device())
for name, dtype in [
("score", query.get_dtype()),
("b", torch.int32),
("h", torch.int32),
("m", torch.int32),
("n", torch.int32),
]
]
subgraph_buffer = build_subgraph_buffer(
placeholder_inps + list(score_mod_other_buffers), subgraph
)
mask_graph_placeholder_inps = [
create_placeholder(name, dtype, query.get_device())
for name, dtype in [
("b", torch.int32),
("h", torch.int32),
("m", torch.int32),
("n", torch.int32),
]
]
mask_graph_buffer = build_subgraph_buffer(
mask_graph_placeholder_inps + list(mask_mod_other_buffers), mask_graph
)
kernel_options = dict(kernel_options)
kernel_options.setdefault("FLOAT32_PRECISION", get_float32_precision())
if _use_flex_decoding(query, kernel_options):
return create_flex_decoding_kernel(
query,
key,
value,
block_mask,
scale,
kernel_options,
subgraph_buffer,
mask_graph_buffer,
score_mod_other_buffers,
mask_mod_other_buffers,
)
(
query,
key,
value,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
) = maybe_realize(
[
query,
key,
value,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
]
)
score_mod_other_buffers = maybe_realize(score_mod_other_buffers)
mask_mod_other_buffers = maybe_realize(mask_mod_other_buffers)
Bq, Hq, seq_len_q, qk_head_dim = query.get_size()
Bkv, Hkv, seq_len_kv, v_head_dim = value.get_size()
assert V.graph.sizevars.evaluate_expr(
sympy.Eq(Bq, Bkv) | sympy.Eq(Bkv, 1)
), f"Bq and Bkv must broadcastable. Got Bq={Bq} and Bkv={Bkv}"
B = Bq
if seq_len_q % 128 != 0 or seq_len_kv % 128 != 0:
kernel_options.setdefault("IS_DIVISIBLE", False)
else:
kernel_options.setdefault("IS_DIVISIBLE", True)
# Reuse query strides for output layout despite different last dimension.
# This works because only the last dim differs and we check it is contiguous.
q_strides = query.get_stride()
assert q_strides[-1] == 1, "Query must be contiguous in the last dimension"
# Construct output layout with strides matching the query.
out_size = [B, Hq, seq_len_q, v_head_dim]
fill_order = get_fill_order(query.get_stride())
out_strides = construct_strides(out_size, fill_order)
layout = FixedLayout(
query.get_device(),
query.get_dtype(),
[B, Hq, seq_len_q, v_head_dim],
stride=[sympy.sympify(s) for s in out_strides],
)
# see NOTE:[TritonTemplates with multiple outputs]
logsumexp_shape = [B, Hq, seq_len_q]
logsumexp = empty_strided(
logsumexp_shape,
None,
dtype=torch.float32, # The logsumexp is always stored in fp32 regardless of the input dtype
device=query.get_device(),
)
kernel_options.setdefault("SM_SCALE", scale)
# Determine GQA broadcast factor.
gqa_shared_heads = Hq // Hkv
kernel_options.setdefault("GQA_SHARED_HEADS", gqa_shared_heads)
# Inside of Triton kernel, only apply partial masking if partial blocks are computed.
# full_kv_num_blocks is None if partial blocks are not computed
has_full_blocks = full_kv_num_blocks is not None
kernel_options.setdefault("HAS_FULL_BLOCKS", has_full_blocks)
if not has_full_blocks:
full_kv_num_blocks, full_kv_indices = (
empty(0, device=query.get_device()) for _ in range(2)
)
kernel_options.setdefault("QK_HEAD_DIM", qk_head_dim)
kernel_options.setdefault("V_HEAD_DIM", v_head_dim)
choices: List[Any] = []
configs: List[Tuple[int, int, int, int]] = []
configs.append(_get_default_config_fwd(query))
if config.max_autotune:
configs += [
(128, 64, 4, 3),
(128, 128, 4, 3),
(128, 128, 8, 2),
(64, 128, 4, 3),
(64, 64, 4, 3),
]
# On ROCm convert num_stages to 1 to avoid shmem issues
if torch.version.hip:
configs = [(c[0], c[1], c[2], 1) for c in configs]
# Mark SPARSE_KV_BLOCK_SIZE & SPARSE_Q_BLOCK_SIZE as static shapes and add guards.
SPARSE_KV_BLOCK_SIZE = V.graph.sizevars.evaluate_static_shape(SPARSE_KV_BLOCK_SIZE)
SPARSE_Q_BLOCK_SIZE = V.graph.sizevars.evaluate_static_shape(SPARSE_Q_BLOCK_SIZE)
# Note, we don't need to pass in the captured buffers explicitly
# because they're implicitly added by the score_mod function
# We do need to explicitly pass it in for autotuning though.
original_kernel_options = kernel_options.copy()
for BLOCK_M, BLOCK_N, num_warps, num_stages in configs:
if SPARSE_KV_BLOCK_SIZE % BLOCK_N != 0 or SPARSE_Q_BLOCK_SIZE % BLOCK_M != 0:
if len(configs) == 1:
raise ValueError(
f"Q and KV block size must be divisible by BLOCK_M and BLOCK_N. We"
f"got Q_BLOCK_SIZE={SPARSE_Q_BLOCK_SIZE} and KV_BLOCK_SIZE={SPARSE_KV_BLOCK_SIZE}."
)
continue
# Work around https://github.com/pytorch/pytorch/issues/129625
if num_stages == 2:
continue
cur_kernel_options = original_kernel_options.copy()
# Performance tuning
cur_kernel_options.setdefault("BLOCK_M", BLOCK_M)
cur_kernel_options.setdefault("BLOCK_N", BLOCK_N)
# Blocksparse options
cur_kernel_options.setdefault("SPARSE_Q_BLOCK_SIZE", SPARSE_Q_BLOCK_SIZE)
cur_kernel_options.setdefault("SPARSE_KV_BLOCK_SIZE", SPARSE_KV_BLOCK_SIZE)
error = flex_attention_template.maybe_append_choice(
choices=choices,
input_nodes=[
query,
key,
value,
logsumexp,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
],
layout=layout,
subgraphs=[
subgraph_buffer,
mask_graph_buffer,
],
mutated_inputs=[
logsumexp,
],
num_stages=num_stages,
num_warps=num_warps,
call_sizes=query.get_size(),
**cur_kernel_options,
)
if error is not None and len(configs) == 1:
raise error
inputs_for_autotuning = (
[
query,
key,
value,
logsumexp,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
]
+ list(score_mod_other_buffers)
+ list(mask_mod_other_buffers)
)
input_gen_fns = {
4: create_num_blocks_fake_generator(kv_indices),
5: create_indices_fake,
6: create_num_blocks_fake_generator(full_kv_indices),
7: create_indices_fake,
}
return (
autotune_select_algorithm(
"flex_attention",
choices,
inputs_for_autotuning,
layout,
input_gen_fns=input_gen_fns,
),
logsumexp,
)
# ---------------------------- Backward HOP Implementation ----------------------------
def flex_attention_backward_grid(
batch_size, q_heads, num_queries, d_model, kv_heads, num_key_value, meta
):
"""How is this kernel parallelized?
Currently this is only parallelizing over batch* kv_heads, but we can, and want to
parallelize over ceil_div(q_heads//kv_heads * num_key_value, key_value_block_size).
To do this will either require atomic updates to some grad values or to have a two pass kernel design.
"""
import triton
return (
triton.cdiv(num_queries, meta["BLOCK_M2"]) * (q_heads // kv_heads)
+ triton.cdiv(num_key_value, meta["BLOCK_N1"]),
1,
batch_size * kv_heads,
)
flex_attention_backward_template = TritonTemplate(
name="flex_attention_backward",
grid=flex_attention_backward_grid,
source=r"""
{{def_kernel("Q", "K", "V", "LSE", "DELTA", "DO", "DQ", "DV", "KV_NUM_BLKS", "KV_IDX", "Q_NUM_BLKS", "Q_IDX", "FULL_KV_NUM_BLKS", "FULL_KV_IDX", "FULL_Q_NUM_BLKS", "FULL_Q_IDX")}}
# Sub notation for this kernel:
#
# Q: Query, K: Key, V: Value
# LSE: logsumexp (logsumexp is always stored in fp32 regardless of the input dtype)
# DELTA: Precomputed sum(OUT*DO, axis=-1)
# DO: Derivative of Output, DQ: Derivative of Query, DV: Derivative of Value
# DK: Derivative of Key, is the written to via the store_output call due to some limitations with
# inductor codegen
# M: Number of queries, N: Number of keys/values
# QK_HEAD_DIM: The dimension of the query and key embeddings
# V_HEAD_DIM: The dimension of the value embeddings
# z: Batch size, h: Number of heads, m: Number of queries or keys/values, d: Head dim
# GQA_SHARED_HEADS: number of query heads sharing one kv head in GQA setups.
# (Modifiable) Performance tuning options
# BLOCK_M1: when calculating DK & DV, iterate over BLOCK_M1 across the seqlen dim of Q in each thread block.
# BLOCK_N1: when calculating DK & DV, the thread block size across the seqlen dim of K/V.
# BLOCK_M2: when calculating DQ, the thread block size across the seqlen dim of Q.
# BLOCK_N2: when calculating DQ, iterate over BLOCK_N2 across the seqlen dim of K/V in each thread block.
#
# The following FULL_* and PARTIAL_* is defined in the block sparse mask grid, rather than the thread block grid.
# KV_NUM_BLKS: The number of KV blocks (that may or may not require masking) for each query.
# KV_IDX: The indices of KV blocks (that may or may not require masking) for each query.
# Q_NUM_BLKS: The number of Q blocks (that may or may not require masking) for each query.
# Q_IDX: The indices of Q blocks (that may or may not require masking) for each query.
# FULL_KV_NUM_BLKS: The number of fully unmasked KV blocks (so we don't need masking) for each query.
# FULL_KV_IDX: The indices of fully unmasked KV blocks (so we don't need masking) for each query.
# FULL_Q_NUM_BLKS: The number of fully unmasked Q blocks (so we don't need masking) for each query.
# FULL_Q_IDX: The indices of fully unmasked Q blocks (so we don't need masking) for each query.
# The below are kernel options that can be applied for certain score_mods,
# or involve a numerics vs. perf tradeoff
# PRESCALE_QK: Whether to pre-scale QK by 1/sqrt(d) and change of base. Has
# about 20% more numerical error, but slightly faster.
# Define strides of inputs
stride_qz, stride_qh, stride_qm, stride_qd = {{stride("Q")}}
stride_kz, stride_kh, stride_kn, stride_kd = {{stride("K")}}
stride_vz, stride_vh, stride_vn, stride_vd = {{stride("V")}}
stride_doz, stride_doh, stride_dom, stride_dod = {{stride("DO")}}
stride_dqz, stride_dqh, stride_dqm, stride_dqd = {{stride("DQ")}}
stride_dvz, stride_dvh, stride_dvm, stride_dvd = {{stride("DV")}}
ZQ = {{size("Q", 0)}}
HQ = {{size("Q", 1)}}
HKV = {{size("K", 1)}}
Q_LEN = {{size("Q", 2)}}
ZKV = {{size("K", 0)}}
KV_LEN = {{size("K", 2)}}
MATMUL_PRECISION = Q.dtype.element_ty
pid = tl.program_id(0)
NUM_KV_BLOCKS = tl.cdiv(KV_LEN, BLOCK_N1)
NUM_Q_BLOCKS = tl.cdiv(Q_LEN, BLOCK_M2)
off_hz = tl.program_id(2)
off_zq = off_hz // HKV # q batch idx
off_hkv = off_hz % HKV # kv head idx
off_zkv = off_zq % ZKV # kv batch idx
SPARSE_Z = {{size("KV_NUM_BLKS", 0)}}
SPARSE_HQ = {{size("KV_NUM_BLKS", 1)}}
sparse_idx_z = off_zq % SPARSE_Z
k_adj = (stride_kh * off_hkv + stride_kz * off_zkv).to(tl.int64)
v_adj = (stride_vh * off_hkv + stride_vz * off_zkv).to(tl.int64)
# first compute broadcasted dv of shape [Bq, Hkv, KV_LEN, V_HEAD_DIM]
# then reduce to dv of shape [Bkv, Hkv, KV_LEN, V_HEAD_DIM]
dv_adj = (stride_dvh * off_hkv + stride_dvz * off_zq).to(tl.int64)
# offset K, V, DV pointers for batch/kv-head
K += k_adj
V += v_adj
DV += dv_adj
RCP_LN2 = 1.44269504
offs_k = tl.arange(0, QK_HEAD_DIM)
offs_v = tl.arange(0, V_HEAD_DIM)
if pid >= NUM_KV_BLOCKS:
off_pid = pid - NUM_KV_BLOCKS
# THIS BLOCK DOES DQ
SPARSE_Q_MULTIPLE = (SPARSE_Q_BLOCK_SIZE // BLOCK_M2)
SPARSE_KV_MULTIPLE = (SPARSE_KV_BLOCK_SIZE // BLOCK_N2)
off_hq2 = off_pid // NUM_Q_BLOCKS + off_hkv * GQA_SHARED_HEADS
start_m2_block = off_pid % NUM_Q_BLOCKS
off_pid_mask = start_m2_block // SPARSE_Q_MULTIPLE
stride_kv_num_blks_h = {{stride("KV_NUM_BLKS", 1)}}
stride_kv_idx_h = {{stride("KV_IDX", 1)}}
stride_kv_idx_m = {{stride("KV_IDX", 2)}}
sparse_idx_hq2 = off_hq2 % SPARSE_HQ
sparse_hz_offset = sparse_idx_z * SPARSE_HQ + sparse_idx_hq2
sparse_kv_num_blks_offset = sparse_hz_offset * stride_kv_num_blks_h + off_pid_mask
sparse_kv_idx_offset = sparse_hz_offset * stride_kv_idx_h + off_pid_mask * stride_kv_idx_m # noqa: B950
# Offset Q, DQ, DO, DELTA & LSE. These inputs are offseted by query heads.
q_adj2 = (stride_qh * off_hq2 + stride_qz * off_zq).to(tl.int64)
do_adj2 = (stride_doh * off_hq2 + stride_doz * off_zq).to(tl.int64)
dq_adj2 = (stride_dqh * off_hq2 + stride_dqz * off_zq).to(tl.int64)
off_chz2 = ((off_zq * HQ + off_hq2) * Q_LEN).to(tl.int64)
Q2 = Q + q_adj2
DO2 = DO + do_adj2
# TODO: This does not work if DQ is not the same layout as Q (for example,
# if Q is broadcasted)
DQ2 = DQ + dq_adj2
LSE2 = LSE + off_chz2
DELTA2 = DELTA + off_chz2
dq = tl.zeros([BLOCK_M2, QK_HEAD_DIM], dtype=tl.float32)
start_m2 = start_m2_block * BLOCK_M2
offs_m2 = start_m2 + tl.arange(0, BLOCK_M2)
# load Q and do: they stay in SRAM throughout the inner loop.
if IS_DIVISIBLE:
q = tl.load(Q2 + offs_m2[:, None] * stride_qm + offs_k[None, :] * stride_qd)
do = tl.load(DO2 + offs_m2[:, None] * stride_dom + offs_v[None, :] * stride_dod)
else:
q = tl.load(Q2 + offs_m2[:, None] * stride_qm + offs_k[None, :] * stride_qd, mask=offs_m2[:, None] < Q_LEN)
do = tl.load(DO2 + offs_m2[:, None] * stride_dom + offs_v[None, :] * stride_dod, mask=offs_m2[:, None] < Q_LEN)
if PRESCALE_QK:
q = (q * SM_SCALE * RCP_LN2).to(MATMUL_PRECISION)
if IS_DIVISIBLE:
Di = tl.load(DELTA2 + offs_m2)
lse = tl.load(LSE2 + offs_m2)
else:
Di = tl.load(DELTA2 + offs_m2, mask=offs_m2 < Q_LEN)
lse = tl.load(LSE2 + offs_m2, mask=offs_m2 < Q_LEN)
lse = tl.where(lse == -float("inf"), 0.0, lse)
lse = lse[:, None]
# ~~~~~~~~~~~ fully unmasked blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# KV_IDX and KV_NUM_BLKS are always contiguous.
kv_indices = KV_IDX + sparse_kv_idx_offset
kv_start = tl.load(kv_indices) * SPARSE_KV_BLOCK_SIZE # first kv block we're loading
sparse_kv_num_blocks = tl.load(KV_NUM_BLKS + sparse_kv_num_blks_offset)
offs_n2 = kv_start + tl.arange(0, BLOCK_N2)
dq = bwd_dq_inner(
{{gen_argdefs()}},
K, V,
dq, q, do, Di, lse,
off_zq, off_hq2, offs_m2, offs_n2,
stride_kn, stride_kd, stride_vn, stride_vd,
kv_indices, sparse_kv_num_blocks,
MATMUL_PRECISION,
IS_FULL_BLOCKS=False,
)
if HAS_FULL_BLOCKS:
# ~~~~~~~~~~~ partial unmasked blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# FULL_KV_IDX and FULL_KV_NUM_BLKS are always contiguous.
kv_indices = FULL_KV_IDX + sparse_kv_idx_offset
kv_start = tl.load(kv_indices) * SPARSE_KV_BLOCK_SIZE # first kv block we're loading
sparse_kv_num_blocks = tl.load(FULL_KV_NUM_BLKS + sparse_kv_num_blks_offset)
offs_n2 = kv_start + tl.arange(0, BLOCK_N2)
dq = bwd_dq_inner(
{{gen_argdefs()}},
K, V,
dq, q, do, Di, lse,
off_zq, off_hq2, offs_m2, offs_n2,
stride_kn, stride_kd, stride_vn, stride_vd,
kv_indices, sparse_kv_num_blocks,
MATMUL_PRECISION,
IS_FULL_BLOCKS=True,
)
# Write back dQ.
dq_ptrs = DQ2 + offs_m2[:, None] * stride_dqm + offs_k[None, :] * stride_dqd
dq *= SM_SCALE
if IS_DIVISIBLE:
tl.store(dq_ptrs, dq)
else:
tl.store(dq_ptrs, dq, mask=offs_m2[:, None] < Q_LEN)
else:
# THIS BLOCK DOES DK & DV
SPARSE_Q_MULTIPLE = (SPARSE_Q_BLOCK_SIZE // BLOCK_M1)
SPARSE_KV_MULTIPLE = (SPARSE_KV_BLOCK_SIZE // BLOCK_N1)
pid_mask = pid // SPARSE_KV_MULTIPLE
stride_q_num_blks_h = {{stride("Q_NUM_BLKS", 1)}}
stride_q_idx_h = {{stride("Q_IDX", 1)}}
stride_q_idx_n = {{stride("Q_IDX", 2)}}
dv = tl.zeros([BLOCK_N1, V_HEAD_DIM], dtype=tl.float32)
dk = tl.zeros([BLOCK_N1, QK_HEAD_DIM], dtype=tl.float32)
start_n1 = pid * BLOCK_N1
offs_n1 = start_n1 + tl.arange(0, BLOCK_N1)
# load K and V: they stay in SRAM throughout the inner loop.
if IS_DIVISIBLE:
k = tl.load(K + offs_n1[:, None] * stride_kn + offs_k[None, :] * stride_kd)
v = tl.load(V + offs_n1[:, None] * stride_vn + offs_v[None, :] * stride_vd)
else:
k = tl.load(K + offs_n1[:, None] * stride_kn + offs_k[None, :] * stride_kd, mask=offs_n1[:, None] < KV_LEN)
v = tl.load(V + offs_n1[:, None] * stride_vn + offs_v[None, :] * stride_vd, mask=offs_n1[:, None] < KV_LEN)
if PRESCALE_QK:
k = (k * SM_SCALE * RCP_LN2).to(MATMUL_PRECISION)
for off_g in range(0, GQA_SHARED_HEADS):
off_hq1 = off_hkv * GQA_SHARED_HEADS + off_g
# Offset Q, DQ, DO, DELTA & LSE. These inputs are offseted by query heads.
q_adj1 = (stride_qh * off_hq1 + stride_qz * off_zq).to(tl.int64)
do_adj1 = (stride_doh * off_hq1 + stride_doz * off_zq).to(tl.int64)
dq_adj1 = (stride_dqh * off_hq1 + stride_dqz * off_zq).to(tl.int64)
off_chz1 = ((off_zq * HQ + off_hq1) * Q_LEN).to(tl.int64)
Q1 = Q + q_adj1
DO1 = DO + do_adj1
# TODO: This does not work if DQ is not the same layout as Q (for example,
# if Q is broadcasted)
LSE1 = LSE + off_chz1
DELTA1 = DELTA + off_chz1
sparse_idx_hq1 = off_hq1 % SPARSE_HQ
sparse_hz_offset = sparse_idx_z * SPARSE_HQ + sparse_idx_hq1
sparse_q_num_blks_offset = sparse_hz_offset * stride_q_num_blks_h + pid_mask
sparse_q_idx_offset = sparse_hz_offset * stride_q_idx_h + pid_mask * stride_q_idx_n # noqa: B950
# ~~~~~~~~~~~~~~~ fully unmasked blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Q_IDX and Q_NUM_BLKS are always contiguous.
q_indices = Q_IDX + sparse_q_idx_offset
q_start = tl.load(q_indices) * SPARSE_Q_BLOCK_SIZE # first q block we're loading
sparse_q_num_blocks = tl.load(Q_NUM_BLKS + sparse_q_num_blks_offset)
offs_m1 = q_start + tl.arange(0, BLOCK_M1)
dk, dv = bwd_dkdv_inner(
{{gen_argdefs()}},
Q1, DO1, DELTA1, LSE1,
dk, dv, k, v,
off_zq, off_hq1, offs_n1, offs_m1,
stride_qm, stride_qd, stride_dom, stride_dod,
q_indices, sparse_q_num_blocks,
MATMUL_PRECISION,
IS_FULL_BLOCKS=False,
)
if HAS_FULL_BLOCKS:
# ~~~~~~~~~~~~~~~ fully unmasked blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# FULL_Q_IDX and FULL_Q_NUM_BLKS are always contiguous.
q_indices = FULL_Q_IDX + sparse_q_idx_offset
q_start = tl.load(q_indices) * SPARSE_Q_BLOCK_SIZE # first q block we're loading
sparse_q_num_blocks = tl.load(FULL_Q_NUM_BLKS + sparse_q_num_blks_offset)
offs_m1 = q_start + tl.arange(0, BLOCK_M1)
dk, dv = bwd_dkdv_inner(
{{gen_argdefs()}},
Q1, DO1, DELTA1, LSE1,
dk, dv, k, v,
off_zq, off_hq1, offs_n1, offs_m1,
stride_qm, stride_qd, stride_dom, stride_dod,
q_indices, sparse_q_num_blocks,
MATMUL_PRECISION,
IS_FULL_BLOCKS=True,
)
# Write back dV and dK.
dv_ptrs = DV + offs_n1[:, None] * stride_dvm + offs_v[None, :] * stride_dvd
index_n = offs_n1[:, None]
index_k = offs_k[None, :]
if IS_DIVISIBLE:
tl.store(dv_ptrs, dv)
else:
tl.store(dv_ptrs, dv, mask=index_n < KV_LEN)
dk *= SM_SCALE
mask = index_n < KV_LEN
# first compute broadcasted dk of shape [Bq, Hkv, KV_LEN, V_HEAD_DIM]
# then reduce to dk of shape [Bkv, Hkv, KV_LEN, V_HEAD_DIM]
{{store_output(("off_zq", "off_hkv", "index_n", "index_k"), "dk", "mask", indent_width=8)}}
@triton.jit
def bwd_dq_inner(
{{gen_argdefs()}},
K, V, # pointers
dq, q, do, Di, lse,
off_z, off_hq, offs_m2, offs_n2,
stride_kn, stride_kd, stride_vn, stride_vd,
kv_indices, sparse_kv_num_blocks,
MATMUL_PRECISION,
IS_FULL_BLOCKS,
):
{{gen_defines() | indent_except_first(1) }}
SPARSE_KV_MULTIPLE: tl.constexpr = (SPARSE_KV_BLOCK_SIZE // BLOCK_N2)
RCP_LN2: tl.constexpr = 1.44269504
Q_LEN = {{size("Q", 2)}}
KV_LEN = {{size("K", 2)}}
offs_k = tl.arange(0, QK_HEAD_DIM)
offs_v = tl.arange(0, V_HEAD_DIM)
kT_ptrs = K + offs_n2[None, :] * stride_kn + offs_k[:, None] * stride_kd
vT_ptrs = V + offs_n2[None, :] * stride_vn + offs_v[:, None] * stride_vd
# BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
hi = tl.minimum(sparse_kv_num_blocks * SPARSE_KV_MULTIPLE, tl.maximum(tl.cdiv(KV_LEN, BLOCK_N2), 1))
if not IS_DIVISIBLE:
if hi >= 1:
for start_n in range(0, hi - 1):
dq = bwd_dq_block_mn(
{{gen_argdefs()}},
dq, q, kT_ptrs, vT_ptrs, do, Di, lse, Q_LEN, KV_LEN,
off_z, off_hq, offs_m2, offs_n2,
stride_kn, stride_kd, stride_vn, stride_vd,
kv_indices, sparse_kv_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS,
)
# Increment pointers.
offset = get_offset_for_next_block(
start_n, kv_indices, sparse_kv_num_blocks,
SPARSE_KV_BLOCK_SIZE, SPARSE_KV_MULTIPLE, BLOCK_N2, BLOCKS_ARE_CONTIGUOUS
)
kT_ptrs += offset * stride_kn
vT_ptrs += offset * stride_vn
offs_n2 += offset
dq = bwd_dq_block_mn(
{{gen_argdefs()}},
dq, q, kT_ptrs, vT_ptrs, do, Di, lse, Q_LEN, KV_LEN,
off_z, off_hq, offs_m2, offs_n2,
stride_kn, stride_kd, stride_vn, stride_vd,
kv_indices, sparse_kv_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS, CHECK_BLOCK_BOUNDARY=True,
)
else:
for start_n in range(0, hi):
dq = bwd_dq_block_mn(
{{gen_argdefs()}},
dq, q, kT_ptrs, vT_ptrs, do, Di, lse, Q_LEN, KV_LEN,
off_z, off_hq, offs_m2, offs_n2,
stride_kn, stride_kd, stride_vn, stride_vd,
kv_indices, sparse_kv_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS,
)
# Increment pointers.
offset = get_offset_for_next_block(
start_n, kv_indices, sparse_kv_num_blocks,
SPARSE_KV_BLOCK_SIZE, SPARSE_KV_MULTIPLE, BLOCK_N2, BLOCKS_ARE_CONTIGUOUS
)
kT_ptrs += offset * stride_kn
vT_ptrs += offset * stride_vn
offs_n2 += offset
return dq
@triton.jit
def bwd_dq_block_mn(
{{gen_argdefs()}},
dq, q, kT_ptrs, vT_ptrs, do, Di, lse, Q_LEN, KV_LEN,
off_z, off_hq, offs_m2, offs_n2,
stride_kn, stride_kd, stride_vn, stride_vd,
kv_indices, sparse_kv_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS, CHECK_BLOCK_BOUNDARY=False,
):
{{gen_defines() | indent_except_first(1)}}
if IS_DIVISIBLE:
kT = tl.load(kT_ptrs)
else:
kT = tl.load(kT_ptrs, mask=offs_n2[None, :] < KV_LEN)
qk = tl.dot(q, kT, input_precision=FLOAT32_PRECISION)
if not PRESCALE_QK:
qk *= SM_SCALE
# ~~~~~~~~~~~~~~~~~~~ Apply score modification ~~~~~~~~~~~~~~~~~~~
pre_mod_scores = qk
n = get_bounded_indices(offs_n2[None, :], KV_LEN if CHECK_BLOCK_BOUNDARY else None)
# The boundary check is done for the outer loop, but here it's possible since we're iterating across N dim
# that the M reads out of bounds prior to the last loop
m = get_bounded_indices(offs_m2[:, None], Q_LEN if (not IS_DIVISIBLE or CHECK_BLOCK_BOUNDARY) else None)
{{ modification(
subgraph_number=0,
output_name="post_mod_scores",
score="qk",
b="off_z",
h="off_hq",
m="m",
n="n",
out="qk"
) | indent_except_first(1) }}
if CHECK_BLOCK_BOUNDARY:
# Mask out the elements that are out of the KV_LEN for non divisible seqlen.
post_mod_scores = tl.where(offs_n2[None, :] < KV_LEN, post_mod_scores, float("-inf"))
if not IS_FULL_BLOCKS:
{{ modification(
subgraph_number=2,
output_name="mask_mod_output",
score="qk",
b="off_z",
h="off_hq",
m="m",
n="n",
) | indent_except_first(2) }}
if CHECK_BLOCK_BOUNDARY:
mask_mod_output = tl.where(offs_n2[None, :] < KV_LEN, mask_mod_output, False)
# apply mask for partial masked block
post_mod_scores = tl.where(mask_mod_output, post_mod_scores, float("-inf"))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if not PRESCALE_QK:
post_mod_scores *= RCP_LN2
p = tl.math.exp2(post_mod_scores - lse)
# Compute dP and dS.
if IS_DIVISIBLE:
vT = tl.load(vT_ptrs)
else:
vT = tl.load(vT_ptrs, mask=offs_n2[None, :] < KV_LEN)
dp = tl.dot(do, vT, input_precision=FLOAT32_PRECISION)
ds = p * (dp - Di[:, None])
# ~~~~~~~~~~~~~~~~~~~ Apply joint modification ~~~~~~~~~~~~~~~~~~~
{{ modification(
subgraph_number=1,
output_name = "grad_scores",
score="pre_mod_scores",
b="off_z",
h="off_hq",
m="m",
n="n",
grad_score_mod="ds"
) | indent_except_first(1) }}
if CHECK_BLOCK_BOUNDARY:
grad_scores = tl.where(offs_n2[None, :] < KV_LEN, grad_scores, 0.0)
ds = grad_scores
if not IS_FULL_BLOCKS:
if CHECK_BLOCK_BOUNDARY:
mask_mod_output = tl.where(offs_n2[None, :] < KV_LEN, mask_mod_output, False)
# (grads) apply mask for partially unmasked block
ds = tl.where(mask_mod_output, ds, 0.0)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ds = ds.to(MATMUL_PRECISION)
# Compute dQ.
dq += tl.dot(ds, tl.trans(kT), input_precision=FLOAT32_PRECISION)
return dq
@triton.jit
def bwd_dkdv_inner(
{{gen_argdefs()}},
Q, DO, DELTA, LSE, # pointers
dk, dv, k, v,
off_z, off_hq, offs_n1, offs_m1,
stride_qm, stride_qd, stride_dom, stride_dod,
q_indices, sparse_q_num_blocks,
MATMUL_PRECISION,
IS_FULL_BLOCKS,
):
{{gen_defines() | indent_except_first(1) }}
SPARSE_Q_MULTIPLE: tl.constexpr = (SPARSE_Q_BLOCK_SIZE // BLOCK_M1)
RCP_LN2: tl.constexpr = 1.44269504
Q_LEN = {{size("Q", 2)}}
KV_LEN = {{size("K", 2)}}
offs_k = tl.arange(0, QK_HEAD_DIM)
offs_v = tl.arange(0, V_HEAD_DIM)
qT_ptrs = Q + offs_m1[None, :] * stride_qm + offs_k[:, None] * stride_qd
do_ptrs = DO + offs_m1[:, None] * stride_dom + offs_v[None, :] * stride_dod
# BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
hi = tl.minimum(sparse_q_num_blocks * SPARSE_Q_MULTIPLE, tl.maximum(tl.cdiv(Q_LEN, BLOCK_M1), 1))
if not IS_DIVISIBLE:
if hi >= 1:
for start_m in range(0, hi - 1):
dk, dv = bwd_dkdv_block_mn(
{{gen_argdefs()}},
dk, dv, qT_ptrs, k, v, do_ptrs, DELTA, LSE, Q_LEN, KV_LEN,
off_z, off_hq, offs_n1, offs_m1,
stride_qm, stride_qd, stride_dom, stride_dod,
q_indices, sparse_q_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS,
)
# Increment pointers.
offset = get_offset_for_next_block(
start_m, q_indices, sparse_q_num_blocks,
SPARSE_Q_BLOCK_SIZE, SPARSE_Q_MULTIPLE, BLOCK_M1, BLOCKS_ARE_CONTIGUOUS
)
qT_ptrs += offset * stride_qm
do_ptrs += offset * stride_dom
offs_m1 += offset
dk, dv = bwd_dkdv_block_mn(
{{gen_argdefs()}},
dk, dv, qT_ptrs, k, v, do_ptrs, DELTA, LSE, Q_LEN, KV_LEN,
off_z, off_hq, offs_n1, offs_m1,
stride_qm, stride_qd, stride_dom, stride_dod,
q_indices, sparse_q_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS, CHECK_BLOCK_BOUNDARY=True,
)
else:
for start_m in range(0, hi):
dk, dv = bwd_dkdv_block_mn(
{{gen_argdefs()}},
dk, dv, qT_ptrs, k, v, do_ptrs, DELTA, LSE, Q_LEN, KV_LEN,
off_z, off_hq, offs_n1, offs_m1,
stride_qm, stride_qd, stride_dom, stride_dod,
q_indices, sparse_q_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS,
)
# Increment pointers.
offset = get_offset_for_next_block(
start_m, q_indices, sparse_q_num_blocks,
SPARSE_Q_BLOCK_SIZE, SPARSE_Q_MULTIPLE, BLOCK_M1, BLOCKS_ARE_CONTIGUOUS
)
qT_ptrs += offset * stride_qm
do_ptrs += offset * stride_dom
offs_m1 += offset
return dk, dv
@triton.jit
def bwd_dkdv_block_mn(
{{gen_argdefs()}},
dk, dv, qT_ptrs, k, v, do_ptrs, DELTA, LSE, Q_LEN, KV_LEN,
off_z, off_hq, offs_n1, offs_m1,
stride_qm, stride_qd, stride_dom, stride_dod,
q_indices, sparse_q_num_blocks,
MATMUL_PRECISION, RCP_LN2,
IS_FULL_BLOCKS, CHECK_BLOCK_BOUNDARY=False,
):
{{gen_defines() | indent_except_first(1) }}
# Load LSE before computing qk to reduce pipeline stall.
if IS_DIVISIBLE:
qT = tl.load(qT_ptrs)
lse = tl.load(LSE + offs_m1)
else:
qT = tl.load(qT_ptrs, mask=offs_m1[None, :] < Q_LEN)
lse = tl.load(LSE + offs_m1, mask=offs_m1 < Q_LEN)
lse = tl.where(lse == -float("inf"), 0.0, lse)
qkT = tl.dot(k, qT, input_precision=FLOAT32_PRECISION)
if not PRESCALE_QK:
qkT *= SM_SCALE
# ~~~~~~~~~~~~~~~~~~~ Apply score modification ~~~~~~~~~~~~~~~~~~~
m = get_bounded_indices(offs_m1[None, :], Q_LEN if CHECK_BLOCK_BOUNDARY else None)
# The boundary check is done for the outer loop, but here it's possible since we're iterating across M dim
# that the n reads out of bounds prior to the last loop
n = get_bounded_indices(offs_n1[:, None], KV_LEN if (not IS_DIVISIBLE or CHECK_BLOCK_BOUNDARY) else None)
pre_mod_scores = qkT
{{ modification(
subgraph_number=0,
output_name="post_mod_scores",
score="qkT",
b="off_z",
h="off_hq",
m="m",
n="n",
out="qkT"
) | indent_except_first(1) }}
if CHECK_BLOCK_BOUNDARY:
# Mask out the elements that are out of the KV_LEN for non divisible seqlen.
post_mod_scores = tl.where(offs_n1[:, None] < KV_LEN, post_mod_scores, float("-inf"))
if not IS_FULL_BLOCKS:
{{ modification(
subgraph_number=2,
output_name="mask_mod_output",
score="qkT",
b="off_z",
h="off_hq",
m="m",
n="n",
) | indent_except_first(2) }}
if CHECK_BLOCK_BOUNDARY:
mask_mod_output = tl.where(offs_n1[:, None] < KV_LEN, mask_mod_output, False)
# (grads) apply mask for fully masked block
post_mod_scores = tl.where(mask_mod_output, post_mod_scores, float("-inf"))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if not PRESCALE_QK:
post_mod_scores *= RCP_LN2
pT = tl.math.exp2(post_mod_scores - lse[None, :])
if IS_DIVISIBLE:
do = tl.load(do_ptrs)
else:
do = tl.load(do_ptrs, mask=offs_m1[:, None] < Q_LEN)
# Compute dV.
ppT = pT
dv += tl.dot(ppT.to(MATMUL_PRECISION), do, input_precision=FLOAT32_PRECISION)
if IS_DIVISIBLE:
Di = tl.load(DELTA + offs_m1)
else:
Di = tl.load(DELTA + offs_m1, mask=offs_m1 < Q_LEN)
# Compute dP and dS.
dpT = tl.dot(v, tl.trans(do), input_precision=FLOAT32_PRECISION)
dsT = pT * (dpT - Di[None, :])
# ~~~~~~~~~~~~~~~~~~~ Apply joint modification ~~~~~~~~~~~~~~~~~~~
{{ modification(
subgraph_number=1,
output_name = "grad_scores",
score="pre_mod_scores",
b="off_z",
h="off_hq",
m="m",
n="n",
grad_score_mod="dsT"
) | indent_except_first(1) }}
# ~~~~~~~~~~~~~~~~~~~ Apply other buffer grad writes ~~~~~~~~~~~~~
idx_b = off_z
idx_h = off_hq
idx_m = m
idx_n = n
scatter_mask = offs_m1[None, :] < Q_LEN and offs_n1[:, None] < KV_LEN
{{ modification(
subgraph_number=3,
output_name=None,
mask="scatter_mask",
score="pre_mod_scores",
b="idx_b",
h="idx_h",
m="idx_m",
n="idx_n",
grad_score_mod="dsT"
) | indent_except_first(1) }}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if CHECK_BLOCK_BOUNDARY:
grad_scores = tl.where(offs_n1[:, None] < KV_LEN, grad_scores, 0.0)
dsT = grad_scores
if not IS_FULL_BLOCKS:
if CHECK_BLOCK_BOUNDARY:
mask_mod_output = tl.where(offs_n1[:, None] < KV_LEN, mask_mod_output, False)
# (grads) apply mask for partially unmasked block
dsT = tl.where(mask_mod_output, dsT, 0.0)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
dk += tl.dot(dsT.to(MATMUL_PRECISION), tl.trans(qT), input_precision=FLOAT32_PRECISION)
return dk, dv
"""
+ compute_next_offset_func
+ get_bounded_indices_func,
)
def validate_joint_graph(joint_graph: torch.fx.Graph):
"""We do some pre lowering graph checks in order to raise nicer error messages"""
for node in joint_graph.nodes:
if (
node.op == "call_function"
and node.target == torch.ops.flex_lib.zeros_and_scatter.default
):
for user in node.users:
if user.op != "output":
raise NotImplementedError(
"Using multiple indexing operations on the same tensor that requires gradients "
"in a score_mod function is not currently supported. "
"This typically happens when indexing the same tensor multiple times, like:\n\n"
" def score_mod(score, b, h, q_idx, kv_idx):\n"
" return score + bias[q_idx] + bias[kv_idx] # bias used twice!\n\n"
"A valid workaround is to clone() the tensors that will be indexed multiple times. For example:\n\n"
" bias1 = bias.clone()\n"
" def score_mod(score, b, h, q_idx, kv_idx):\n"
" return score + bias[q_idx] + bias1[kv_idx]\n\n"
"Note that this solution will use additional memory."
)
return
@dataclass(frozen=True)
class JointOutputResult:
"""Results from processing joint outputs."""
grad_input: ComputedBuffer
captured_grads_compute: List[ComputedBuffer]
captured_grads: List[Optional[TensorBox]]
mutated_grads: List[TensorBox]
def process_joint_outputs(
all_joint_outputs: SubgraphResults, num_placeholders: int
) -> JointOutputResult:
"""Process joint outputs and extract various buffers needed for lowering
Args:
all_joint_outputs: List of all the outputs from build_subgraphs
num_placeholders: The number of placeholder inputs, used to skip over unused backward compute buffers
Returns:
JointOutputResult containing processed buffers and gradients
"""
assert isinstance(all_joint_outputs, List)
assert (
all_joint_outputs[0] is not None
), "joint_subgraph_buffer is None this is a bug!"
joint_buffer = all_joint_outputs[0]
other_grads = all_joint_outputs[num_placeholders - 1 :]
# outer_grads has the structure: Len(other_buffer_grads) if buffer doesn't require grad than it will be None
# We only grab the buffers that require grad for inlining into kernel
grads_compute = [buf for buf in other_grads if buf is not None]
def get_out(buf):
if buf is None:
return None
assert isinstance(buf, ComputedBuffer)
assert buf.name is not None
return TensorBox.create(V.graph.get_buffer(buf.name))
grads_out = [get_out(x) for x in other_grads]
mutated_grads = [buf for buf in grads_out if buf is not None]
return JointOutputResult(
grad_input=joint_buffer,
captured_grads_compute=grads_compute,
captured_grads=grads_out,
mutated_grads=mutated_grads,
)
# TODO: We probably also need a layout constraint?
@register_lowering(
torch.ops.higher_order.flex_attention_backward, type_promotion_kind=None
)
def flex_attention_backward(*args, **kwargs):
(
query,
key,
value,
out,
logsumexp,
grad_out,
grad_logsumexp,
fw_graph,
joint_graph,
block_mask,
scale,
kernel_options,
score_mod_other_buffers,
mask_mod_other_buffers,
) = args
(
_, # q_length
_, # kv_length
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
SPARSE_Q_BLOCK_SIZE,
SPARSE_KV_BLOCK_SIZE,
mask_graph,
) = block_mask
(
query,
key,
value,
grad_out,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
) = maybe_realize(
[
query,
key,
value,
grad_out,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
q_num_blocks,
q_indices,
full_q_num_blocks,
full_q_indices,
]
)
device = query.get_device()
dtype = query.get_dtype()
Bq, Hq, seq_len_q, qk_head_dim = query.get_size()
Bkv, Hkv, seq_len_kv, v_head_dim = value.get_size()
assert V.graph.sizevars.evaluate_expr(
sympy.Eq(Bq, Bkv) | sympy.Eq(Bkv, 1)
), f"Bq and Bkv must broadcastable. Got Bq={Bq} and Bkv={Bkv}"
B = Bq
kernel_options = dict(kernel_options)
kernel_options.setdefault("FLOAT32_PRECISION", get_float32_precision())
if seq_len_q % 128 != 0 or seq_len_kv % 128 != 0:
kernel_options.setdefault("IS_DIVISIBLE", False)
else:
kernel_options.setdefault("IS_DIVISIBLE", True)
fwd_placeholder_inps = [
create_placeholder(name, dtype, device)
for name, dtype in [
("score", dtype),
("b", torch.int32),
("h", torch.int32),
("m", torch.int32),
("n", torch.int32),
]
]
fw_subgraph_buffer = build_subgraph_buffer(
fwd_placeholder_inps + list(score_mod_other_buffers), fw_graph
)
joint_placeholder_inps = fwd_placeholder_inps + [
create_placeholder("grad_score_mod", dtype, device)
]
# Sometimes we have weird unused nodes here
joint_graph.graph_module.graph.eliminate_dead_code()
# It is hard to raise nice errors for some joint graphs during subgraph lowering
# This lets us do some checks before attempting to lower
validate_joint_graph(joint_graph.graph_module.graph)
all_joint_outputs = build_subgraph_buffer(
joint_placeholder_inps + list(score_mod_other_buffers),
joint_graph,
)
joint_outputs = process_joint_outputs(
all_joint_outputs, len(joint_placeholder_inps)
)
mask_graph_placeholder_inps = [
create_placeholder(name, dtype, query.get_device())
for name, dtype in [
("b", torch.int32),
("h", torch.int32),
("m", torch.int32),
("n", torch.int32),
]
]
mask_graph_buffer = build_subgraph_buffer(
mask_graph_placeholder_inps + list(mask_mod_other_buffers), mask_graph
)
mask_graph_buffer = mask_graph_buffer
layout_broadcasted_k = FixedLayout(
key.get_device(),
key.get_dtype(),
[Bq, Hkv, seq_len_kv, qk_head_dim],
key.get_stride(),
)
# Create delta which will is needed for the bwd's kernel
grad_lse_exp2 = lowerings[aten.mul](grad_logsumexp, 1 / math.log(2))
mul_delta = lowerings[aten.mul](out, grad_out)
delta = lowerings[aten.sum](mul_delta, axis=-1)
delta = lowerings[aten.sub](delta, grad_lse_exp2)
delta = ExternKernel.require_contiguous(delta)
grad_lse_exp2, delta = maybe_realize([grad_lse_exp2, delta])
# see NOTE:[TritonTemplates with multiple outputs]
grad_query = empty_strided(
query.get_size(), query.get_stride(), dtype=dtype, device=device
)
broadcasted_grad_value = empty_strided(
(Bq, *value.get_size()[1:]),
value.get_stride(),
dtype=dtype,
device=device,
)
kernel_options.setdefault("SM_SCALE", scale)
# Determine GQA factor
gqa_shared_heads = Hq // Hkv
kernel_options.setdefault("GQA_SHARED_HEADS", gqa_shared_heads)
# Inside of Triton kernel, only apply partial masking if partial blocks are computed.
# full_kv_num_blocks is torch.zeros([1, 1, 1]) if partial blocks are not computed.
has_full_blocks = full_kv_num_blocks is not None
kernel_options.setdefault("HAS_FULL_BLOCKS", has_full_blocks)
if not has_full_blocks:
full_kv_num_blocks, full_kv_indices, full_q_num_blocks, full_q_indices = (
empty(0, device=query.get_device()) for _ in range(4)
)
kernel_options.setdefault("QK_HEAD_DIM", qk_head_dim)
kernel_options.setdefault("V_HEAD_DIM", v_head_dim)
choices: List[Any] = []
configs: List[Tuple[int, int, int, int]] = []
configs.append(_get_default_config_bwd(query))
if config.max_autotune:
num_stages_list = [1, 3, 4, 5] if torch.version.hip is None else [1]
configs.extend(
[
(BLOCK1, BLOCK2, w, s)
for BLOCK1 in [32, 64]
for BLOCK2 in [32, 64, 128]
for w in ([4, 8] if BLOCK1 >= 128 or BLOCK2 >= 128 else [4])
for s in num_stages_list
if BLOCK2 % BLOCK1 == 0
]
)
original_kernel_options = kernel_options.copy()
for BLOCK1, BLOCK2, num_warps, num_stages in configs:
if (
SPARSE_KV_BLOCK_SIZE % BLOCK1 != 0
or SPARSE_Q_BLOCK_SIZE % BLOCK1 != 0
or SPARSE_KV_BLOCK_SIZE % BLOCK2 != 0
or SPARSE_Q_BLOCK_SIZE % BLOCK2 != 0
):
continue
# Performance tuning
cur_kernel_options = original_kernel_options.copy()
cur_kernel_options.setdefault("BLOCK_M1", BLOCK1)
cur_kernel_options.setdefault("BLOCK_N1", BLOCK2)
cur_kernel_options.setdefault("BLOCK_M2", BLOCK2)
cur_kernel_options.setdefault("BLOCK_N2", BLOCK1)
# Blocksparse options
cur_kernel_options.setdefault("SPARSE_Q_BLOCK_SIZE", SPARSE_Q_BLOCK_SIZE)
cur_kernel_options.setdefault("SPARSE_KV_BLOCK_SIZE", SPARSE_KV_BLOCK_SIZE)
flex_attention_backward_template.maybe_append_choice(
choices=choices,
input_nodes=[
query,
key,
value,
logsumexp,
delta,
grad_out,
grad_query,
broadcasted_grad_value,
kv_num_blocks,
kv_indices,
q_num_blocks,
q_indices,
full_kv_num_blocks,
full_kv_indices,
full_q_num_blocks,
full_q_indices,
],
layout=layout_broadcasted_k, # We use store_output only for grad_key
subgraphs=[
fw_subgraph_buffer,
joint_outputs.grad_input,
mask_graph_buffer,
joint_outputs.captured_grads_compute,
],
mutated_inputs=[
grad_query,
broadcasted_grad_value,
*joint_outputs.mutated_grads,
],
call_sizes=query.get_size() + key.get_size()[1:3],
num_stages=num_stages,
num_warps=num_warps,
**cur_kernel_options,
)
inputs_for_autotuning = (
[
query,
key,
value,
logsumexp,
delta,
grad_out,
grad_query,
broadcasted_grad_value,
kv_num_blocks,
kv_indices,
q_num_blocks,
q_indices,
full_kv_num_blocks,
full_kv_indices,
full_q_num_blocks,
full_q_indices,
]
+ list(score_mod_other_buffers)
+ list(mask_mod_other_buffers)
+ joint_outputs.mutated_grads
)
input_gen_fns = {
8: create_num_blocks_fake_generator(kv_indices), # kv_num_blocks
9: create_indices_fake,
10: create_num_blocks_fake_generator(q_indices), # q_num_blocks
11: create_indices_fake,
12: create_num_blocks_fake_generator(full_kv_indices), # full_kv_num_blocks
13: create_indices_fake,
14: create_num_blocks_fake_generator(full_q_indices), # full_q_num_blocks
15: create_indices_fake,
}
broadcasted_grad_key = autotune_select_algorithm(
"flex_attention_backward",
choices,
inputs_for_autotuning,
layout_broadcasted_k,
input_gen_fns=input_gen_fns,
) # [Bq, Hkv, seq_len_kv, k_head_dim]
if V.graph.sizevars.evaluate_expr(sympy.Eq(Bq, Bkv)):
grad_key = broadcasted_grad_key
grad_value = broadcasted_grad_value
else:
assert V.graph.sizevars.evaluate_expr(
sympy.Gt(Bq, 1) & sympy.Eq(Bkv, 1)
), f"Bq and Bkv must broadcastable. Got Bq={V.graph.sizevars.evaluate_expr(Bq)} and Bkv={V.graph.sizevars.evaluate_expr(Bkv)}" # noqa: B950
grad_key = lowerings[aten.sum](broadcasted_grad_key, axis=0, keepdims=True)
grad_value = lowerings[aten.sum](broadcasted_grad_value, axis=0, keepdims=True)
return (grad_query, grad_key, grad_value, tuple(joint_outputs.captured_grads))
|