1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
# mypy: allow-untyped-defs
from warnings import warn
import torch
__all__ = [
"ReLU6",
"Hardswish",
"ELU",
"LeakyReLU",
"Sigmoid",
"Softmax",
"MultiheadAttention",
"PReLU",
]
class ReLU6(torch.nn.ReLU):
r"""Applies the element-wise function:
:math:`\text{ReLU6}(x) = \min(\max(x_0, x), q(6))`, where :math:`x_0` is the
zero_point, and :math:`q(6)` is the quantized representation of number 6.
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
.. image:: ../scripts/activation_images/ReLU6.png
Examples::
>>> m = nn.quantized.ReLU6()
>>> input = torch.randn(2)
>>> # xdoctest: +SKIP
>>> input = torch.quantize_per_tensor(input, 1.0, 0, dtype=torch.qint32)
>>> output = m(input)
"""
def __init__(self, inplace=False):
super().__init__(inplace)
self.inplace = inplace
def forward(self, input):
return torch.ops.quantized.relu6(input, self.inplace)
def _get_name(self):
return "QuantizedReLU6"
@staticmethod
def from_float(mod, use_precomputed_fake_quant=False):
return ReLU6(mod.inplace)
class Hardswish(torch.nn.Hardswish):
r"""This is the quantized version of :class:`~torch.nn.Hardswish`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
"""
def __init__(self, scale, zero_point, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.register_buffer("scale", torch.tensor(scale, **factory_kwargs))
self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs))
def forward(self, input):
return torch.ops.quantized.hardswish(input, self.scale, self.zero_point)
def _get_name(self):
return "QuantizedHardswish"
@staticmethod
def from_float(mod, use_precomputed_fake_quant=False):
scale, zero_point = mod.activation_post_process.calculate_qparams()
return Hardswish(float(scale), int(zero_point))
@classmethod
def from_reference(cls, mod, scale, zero_point):
return cls(float(scale), int(zero_point))
class ELU(torch.nn.ELU):
r"""This is the quantized equivalent of :class:`~torch.nn.ELU`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
alpha: the alpha constant
"""
def __init__(self, scale, zero_point, alpha=1.0):
super().__init__(alpha)
self.scale = scale
self.zero_point = zero_point
def forward(self, input):
return torch.ao.nn.quantized.functional.elu(
input, self.scale, self.zero_point, self.alpha
)
def _get_name(self):
return "QuantizedELU"
@staticmethod
def from_float(mod, use_precomputed_fake_quant=False):
scale, zero_point = mod.activation_post_process.calculate_qparams()
return ELU(float(scale), int(zero_point), mod.alpha)
@classmethod
def from_reference(cls, mod, scale, zero_point):
return cls(float(scale), int(zero_point), mod.alpha)
class LeakyReLU(torch.nn.LeakyReLU):
r"""This is the quantized equivalent of :class:`~torch.nn.LeakyReLU`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
negative_slope: Controls the angle of the negative slope. Default: 1e-2
"""
def __init__(
self,
scale: float,
zero_point: int,
negative_slope: float = 1e-2,
inplace: bool = False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(negative_slope, inplace)
self.register_buffer("scale", torch.tensor(scale, **factory_kwargs))
self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs))
def forward(self, input):
return torch.ops.quantized.leaky_relu(
input, self.negative_slope, self.inplace, self.scale, self.zero_point
)
def _get_name(self):
return "QuantizedLeakyReLU"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
scale, zero_point = mod.activation_post_process.calculate_qparams()
return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace)
@classmethod
def from_reference(cls, mod, scale, zero_point):
return cls(float(scale), int(zero_point), mod.negative_slope, mod.inplace)
class Sigmoid(torch.nn.Sigmoid):
r"""This is the quantized equivalent of :class:`~torch.nn.Sigmoid`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
"""
def __init__(self, output_scale: float, output_zero_point: int):
super().__init__()
self.output_scale = output_scale
self.output_zero_point = output_zero_point
def forward(self, input):
return torch.ops.quantized.sigmoid(
input, self.output_scale, self.output_zero_point
)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
(
output_scale,
output_zero_point,
) = mod.activation_post_process.calculate_qparams()
return cls(float(output_scale), int(output_zero_point))
class Softmax(torch.nn.Softmax):
r"""This is the quantized version of :class:`~torch.nn.Softmax`.
Args:
dim: A dimension along which Softmax will be computed (so every slice along dim will sum to 1).
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
"""
def __init__(self, dim=None, scale=1.0, zero_point=0):
super().__init__()
self.dim = dim
self.scale = scale
self.zero_point = zero_point
def forward(self, input):
dim = self.dim
if dim is None:
stacklevel = 3
# Note: adding the mypy ignore on _get_softmax_dim seems less bad
# than making `_get_softmax_dim` an official API.
dim = torch.nn.functional._get_softmax_dim( # type: ignore[attr-defined]
"softmax", input.dim(), stacklevel
)
return torch.ops.quantized.softmax(input, dim, self.scale, self.zero_point)
def _get_name(self):
return "QuantizedSoftmax"
@staticmethod
def from_float(mod, use_precomputed_fake_quant=False):
scale, zero_point = mod.activation_post_process.calculate_qparams()
return Softmax(mod.dim, float(scale), int(zero_point))
@classmethod
def from_reference(cls, mod, scale, zero_point):
return cls(mod.dim, float(scale), int(zero_point))
class MultiheadAttention(torch.ao.nn.quantizable.MultiheadAttention):
_FLOAT_MODULE = torch.ao.nn.quantizable.MultiheadAttention
def _get_name(self):
return "QuantizedMultiheadAttention"
@classmethod
def from_float(cls, other):
# The whole flow is float -> observed -> quantized
# This class does observed -> quantized only
raise NotImplementedError(
"It looks like you are trying to convert a "
"non-observed MHA module. Please, see "
"the examples on quantizable MHAs."
)
@classmethod
def from_observed(cls, other):
converted = torch.ao.quantization.convert(
other,
mapping=None,
inplace=False,
remove_qconfig=True,
convert_custom_config_dict=None,
)
converted.__class__ = cls
# Remove the parameters for the bias_k and bias_v to quantize them
# TODO: This is a potential source of accuracy drop.
# quantized cat takes the scale and zp of the first
# element, which might lose the precision in the bias_k
# and the bias_v (which are cat'ed with k/v being first).
if converted.bias_k is not None:
bias_k = converted._parameters.pop("bias_k")
sc, zp = torch._choose_qparams_per_tensor(bias_k, reduce_range=False)
bias_k = torch.quantize_per_tensor(bias_k, sc, zp, torch.quint8)
setattr(converted, "bias_k", bias_k) # noqa: B010
if converted.bias_v is not None:
bias_v = converted._parameters.pop("bias_v")
sc, zp = torch._choose_qparams_per_tensor(
bias_k, reduce_range=False # type: ignore[possibly-undefined]
)
bias_v = torch.quantize_per_tensor(bias_v, sc, zp, torch.quint8)
setattr(converted, "bias_v", bias_v) # noqa: B010
del converted.in_proj_weight
del converted.in_proj_bias
return converted
class PReLU(torch.nn.Module):
r"""This is the quantized equivalent of :class:`~torch.nn.PReLU`.
Args:
scale: quantization scale of the output tensor
zero_point: quantization zero point of the output tensor
num_parameters: number of parameters: 1, or the number of channels at input. Default: 1
"""
def __init__(
self, output_scale: float, output_zero_point: int, num_parameters: int = 1
) -> None:
super().__init__()
self.num_parameters = num_parameters
self.scale = output_scale
self.zero_point = output_zero_point
w = torch.randn(num_parameters, dtype=torch.float)
qw = torch.quantize_per_tensor(w, scale=1.0, zero_point=0, dtype=torch.quint8)
self.set_weight(qw)
def set_weight(self, w: torch.Tensor) -> None:
self.weight = w
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.ops.quantized.prelu(
input, self.weight, self.scale, self.zero_point
)
def _get_name(self):
return "QuantizedPReLU"
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
scale, zero_point = mod.activation_post_process.calculate_qparams()
qprelu = cls(float(scale), int(zero_point), mod.num_parameters)
float_wt = mod.weight.float()
observer = mod.qconfig.weight()
observer(float_wt)
if observer.dtype != torch.quint8:
warn(
f"PReLU's weight observer should have dtype quint8 but got {observer.dtype}"
)
wt_scale, wt_zp = observer.calculate_qparams()
qweight = torch.quantize_per_tensor(
float_wt, float(wt_scale), int(wt_zp), torch.quint8
)
qprelu.set_weight(qweight)
return qprelu
@classmethod
def from_reference(cls, mod, scale, zero_point):
qprelu = cls(float(scale), int(zero_point), mod.num_parameters)
float_wt = mod.weight.float()
observer = mod.qconfig.weight()
observer(float_wt)
if observer.dtype != torch.quint8:
warn(
f"PReLU's weight observer should have dtype quint8 but got {observer.dtype}"
)
wt_scale, wt_zp = observer.calculate_qparams()
qweight = torch.quantize_per_tensor(
float_wt, float(wt_scale), int(wt_zp), torch.quint8
)
qprelu.set_weight(qweight)
return qprelu
|