File: dropout.py

package info (click to toggle)
pytorch 2.6.0%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 161,672 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (30 lines) | stat: -rw-r--r-- 806 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# mypy: allow-untyped-defs
import torch


__all__ = ["Dropout"]


class Dropout(torch.nn.Dropout):
    r"""This is the quantized equivalent of :class:`~torch.nn.Dropout`.
        And this is a placeholder to enable models where fp32 tensors
        had dropout to work with quantized tensors in train and eval mode.

    Args:
        p: probability of an element to be zeroed
        inplace: can optionally do the operation in-place. Default: ``False``
    """

    def forward(self, input):
        return input

    def _get_name(self):
        return "QuantizedDropout"

    @classmethod
    def from_float(cls, mod, use_precomputed_fake_quant=False):
        return cls(mod.p, mod.inplace)

    @classmethod
    def from_reference(cls, mod, scale, zero_point):
        return cls(mod.p, mod.inplace)