File: compiled_autograd.h

package info (click to toggle)
pytorch 2.6.0%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 161,672 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (909 lines) | stat: -rw-r--r-- 27,325 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
#pragma once
#include <ATen/TensorGeometry.h>
#include <ATen/core/ivalue.h>
#include <c10/core/impl/TorchDispatchModeTLS.h>
#include <c10/util/flat_hash_map.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/input_metadata.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/autograd/variable_info.h>
#include <torch/csrc/utils/python_stub.h>
#include <torch/csrc/utils/torch_dispatch_mode.h>
#include <typeindex>
#include <vector>

// see [Note: Compiled Autograd]

namespace torch::dynamo::autograd {
using namespace torch::autograd;

struct SizeInput {
  // Note: int value is still needed when dynamic to pass as an arg
  enum DynType : uint8_t { STATIC = 0, DYNAMIC = 1 };
  SizeInput(DynType dt, int64_t v) : dyn_type(dt), value(v) {}
  DynType dyn_type;
  int64_t value;
};

struct CacheKeyBuffer {
  CacheKeyBuffer(const uint8_t* key, uint16_t len) : data(new uint8_t[len]) {
    std::memcpy(data.get(), key, len);
  }
  const uint8_t* get() const {
    return data.get();
  }

 private:
  // NOLINTNEXTLINE(*c-array*)
  std::unique_ptr<uint8_t[]> data;
};

struct CacheKey {
  // Key to find the next node in the shadow graph.  We use C++ RTTI for the
  // type of the node (ntype), then a key generated with a visitor pattern.
  CacheKey(const std::type_index& ntype, const uint8_t* key, uint16_t len)
      : node_type(ntype), key_size(len), key(key) {}

  bool operator<(const CacheKey& other) const {
    if (node_type != other.node_type) {
      return node_type < other.node_type;
    }
    if (key_size != other.key_size) {
      return key_size < other.key_size;
    }
    return std::memcmp(key, other.key, key_size) < 0;
  }

  bool operator==(const CacheKey& other) const {
    return node_type == other.node_type && key_size == other.key_size &&
        std::memcmp(key, other.key, key_size) == 0;
  }

  size_t hash() const {
    // don't bother hashing the key data, common case 1 cache entry per node
    return std::hash<std::type_index>()(node_type) ^ key_size;
  }

  std::type_index node_type;
  uint16_t key_size;
  const uint8_t* key;
};

struct NodeCall {
  NodeCall(uint32_t id_, std::shared_ptr<Node> node_)
      : id(id_), node(std::move(node_)) {}

  void mark_output(int input_nr, int output_idx) {
    graph_output.emplace_back(input_nr, output_idx);
  }

  uint32_t id;
  std::shared_ptr<Node> node;
  std::vector<std::pair<int, int>> tensor_pre_hooks;
  std::vector<int> pre_hooks;
  std::vector<int> post_hooks;
  std::vector<int> post_acc_grad_hooks;
  std::vector<std::pair<int, int>> graph_output;
  bool needed = true;
};

struct NodeCalls : public std::unordered_map<Node*, NodeCall> {
  NodeCall& lookup(const std::shared_ptr<Node>& function) {
    auto it = find(function.get());
    if (it == end()) {
      it = emplace(function.get(), NodeCall(_next_id++, function)).first;
      nodes.emplace_back(function.get());
    }
    return it->second;
  }

  const NodeCall& lookup(uint32_t id) const {
    TORCH_INTERNAL_ASSERT(id < nodes.size());
    auto it = find(nodes[id]);
    TORCH_INTERNAL_ASSERT(it != end());
    return it->second;
  }

  void clear() {
    _next_id = 0;
    std::unordered_map<Node*, NodeCall>::clear();
    nodes.clear();
  }

 private:
  uint32_t _next_id = 0;
  std::vector<Node*> nodes;
};

struct TensorArg {
  // Represents a de-duplicated tensor that will be passed into the graph
  TensorArg(uint32_t i = 0) : id(i) {}
  uint32_t index() const {
    TORCH_INTERNAL_ASSERT(defined());
    return id - 1;
  }
  bool defined() const {
    return id != 0;
  }
  uint32_t id;
  at::Tensor proxy_tensor;
};

struct TensorArgs {
  // Manages a collection of TensorArgs and mappings from Tensors/SavedVariables
  // to them.  This also allows us to unpack SavedVariable exactly once and
  // store the unpacked Tensor.
  TensorArgs(const std::optional<size_t>& active_node_call_idx)
      : active_node_call_idx(active_node_call_idx) {}

  TensorArg& lookup(const at::Tensor& tensor, bool create = false) {
    if (!tensor.defined()) {
      return _undefined;
    }
    auto impl = tensor.unsafeGetTensorImpl();
    auto it = _args.find(impl);
    if (it == _args.end()) {
      TORCH_INTERNAL_ASSERT(create && inputs.size() == _next_id - 1);
      it = _args.emplace(impl, TensorArg(_next_id++)).first;
      inputs.emplace_back(tensor);
      if (active_node_call_idx.has_value()) {
        input_origins.emplace_back(active_node_call_idx.value());
      }
    }
    return it->second;
  }

  TensorArg& lookup(const SavedVariable& sv) {
    auto it = _saved_variables.find(&sv);
    TORCH_INTERNAL_ASSERT(it != _saved_variables.end());
    return *it->second;
  }

  TensorArg& add(const at::Tensor& tensor) {
    return lookup(tensor, true);
  }

  TensorArg& add(const SavedVariable& sv, const std::shared_ptr<Node>& node) {
    // TODO(jansel): Here we unpack the SavedVariable exactly once.  This might
    // fire SavedTensor hooks.  In the future we should try to put saved tensor
    // hooks into the graph.
    at::Tensor tensor = sv.unpack(node);
    TensorArg& arg = add(tensor);
    _saved_variables.emplace(&sv, &arg);
    return arg;
  }

  // the concrete tensors that will get passed into the graph as inputs
  std::vector<at::Tensor> inputs;
  // NodeCall id of each input, only when verbose logging is enabled
  std::vector<uint32_t> input_origins;

 private:
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  const std::optional<size_t>& active_node_call_idx;
  std::unordered_map<const c10::TensorImpl*, TensorArg> _args;
  // Every TensorArg from this is actually owned by _args (or _undefined) and
  // that's why we have an un-owned pointer here.
  std::unordered_map<const SavedVariable*, TensorArg*> _saved_variables;
  TensorArg _undefined;
  uint32_t _next_id = 1; // id=0 used by _undefined
};

struct LiftedIValueArg {
  LiftedIValueArg() = delete;
  LiftedIValueArg(const at::IValue* ptr)
      : actual_ptr(ptr), proxy(at::IValue::uninitialized()) {}

  const at::IValue* actual_ptr; // lifetime handled by autograd node
  at::IValue proxy;
};

struct LiftedIValueArgs {
  LiftedIValueArgs(const std::optional<size_t>& active_node_call_idx)
      : active_node_call_idx(active_node_call_idx) {}

  at::IValue& next_proxy(const at::IValue* actual_ptr) {
    TORCH_INTERNAL_ASSERT(next < args.size());
    auto& iv_arg = args.at(next++);
    TORCH_INTERNAL_ASSERT(iv_arg.actual_ptr == actual_ptr);
    return iv_arg.proxy;
  }

  void add(const at::IValue* iv) {
    args.emplace_back(iv);
    if (active_node_call_idx.has_value()) {
      args_origins.emplace_back(active_node_call_idx.value());
    }
  }

  std::vector<LiftedIValueArg> args;
  size_t next = 0;
  // NodeCall id of each arg, only when verbose logging is enabled
  std::vector<uint32_t> args_origins;

 private:
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  const std::optional<size_t>& active_node_call_idx;
};

struct AutogradCompilerCall {
  AutogradCompilerCall(SizeInput::DynType default_dyn_type)
      : active_node_call_idx(std::nullopt),
        tensor_args(active_node_call_idx),
        lifted_ivalue_args(active_node_call_idx),
        default_dyn_type(default_dyn_type) {}
  void add_size_input(const c10::SymInt& s) {
    all_size_inputs.emplace_back(
        default_dyn_type, s.guard_int(__FILE__, __LINE__));
    if (active_node_call_idx.has_value()) {
      size_input_origins.emplace_back(active_node_call_idx.value());
    }
  }

  size_t emplace_hook(c10::SafePyObject&& fn) {
    hooks.emplace_back(std::move(fn));
    return hooks.size() - 1;
  }

  void set_active_node_call_idx(size_t node_call_idx) {
    active_node_call_idx = node_call_idx;
  }

  std::optional<size_t> active_node_call_idx;
  TensorArgs tensor_args;
  std::vector<SizeInput> all_size_inputs;
  LiftedIValueArgs lifted_ivalue_args;
  std::vector<int64_t> dyn_size_inputs;
  std::vector<c10::SafePyObject> hooks;
  NodeCalls node_calls;
  SizeInput::DynType default_dyn_type;
  // NodeCall id of each size, only when verbose logging is enabled
  std::vector<uint32_t> size_input_origins;
};

class CompiledNodeArgs {
  // CompiledNodeArgs builds a representation of the constant values found
  // across all the nodes in the compiled graph, via 'collect' overloads. The
  // collected constants are specialized on by concatenation into a cache key.
  // Tensor, symint arguments (which are lifted to become graph inputs rather
  // than specialized on) are forwarded to the compiler and not included in the
  // key.
 public:
  void collect(const TensorArg& t) {
    collect_size(t.id);
    if (t.defined()) {
      const at::Tensor& tensor = _compiler.tensor_args.inputs[t.index()];
      // including these in the cache key means dynamo-level tensor guards can
      // be skipped
      collect(tensor.device());
      collect(tensor.dtype());
      collect(tensor.requires_grad());
    }
  }

  void collect(const at::Tensor& t) {
    collect(_compiler.tensor_args.add(t));
  }
  void collect(const SavedVariable& sv, bool is_output) {
    collect(
        _compiler.tensor_args.add(sv, is_output ? _node_call.node : nullptr));
  }
  void collect(const c10::SymInt& t) {
    _compiler.add_size_input(t);
  }
  void collect(const std::vector<SavedVariable>& t, bool is_output) {
    collect_size(t.size());
    for (const SavedVariable& i : t) {
      collect(i, is_output);
    }
  }
  template <typename T>
  void collect(const std::vector<T>& t) {
    collect_size(t.size());
    for (const T& i : t) {
      collect(i);
    }
  }
  void collect(const c10::ArrayRef<SavedVariable>& t, bool is_output) {
    collect_size(t.size());
    for (const SavedVariable& i : t) {
      collect(i, is_output);
    }
  }
  template <typename T>
  void collect(const c10::ArrayRef<T>& t) {
    collect_size(t.size());
    for (const T& i : t) {
      collect(i);
    }
  }
  template <typename T>
  void collect(const c10::OptionalArray<T>& t) {
    collect(t.list);
  }
  template <typename T>
  void collect(const std::optional<T>& t) {
    if (cond(t.has_value())) {
      collect(*t);
    }
  }
  template <typename A, typename B>
  void collect(const std::pair<A, B>& t) {
    collect(t.first);
    collect(t.second);
  }
  template <typename V>
  void collect(const ska::flat_hash_map<std::string, V>& m) {
    collect_size(m.size());

    std::vector<std::string> keys;
    keys.reserve(m.size());
    std::transform(
        m.begin(), m.end(), std::back_inserter(keys), [](const auto& entry) {
          return entry.first;
        });
    std::sort(keys.begin(), keys.end());
    for (const auto& k : keys) {
      collect(k);
      collect(m.at(k));
    }
  }
  void collect(const at::IValue& iv, bool nested = false) {
    // used by AutogradContext::saved_data from CppNode
    if (iv.isList()) {
      c10::List<at::IValue> list = iv.toList();
      collect_size(list.size());
      for (auto&& value : list) {
        collect(value, true);
      }
    } else if (iv.isGenericDict()) {
      c10::Dict<at::IValue, at::IValue> ordered_dict = iv.toGenericDict();
      collect_size(ordered_dict.size());
      // NOLINTNEXTLINE(modernize-loop-convert)
      for (auto it = ordered_dict.begin(); it != ordered_dict.end(); it++) {
        collect(it->key());
        collect(it->value(), true);
      }
    } else if (iv.isTensor()) {
      collect(iv.toTensor());
    } else if (
        !nested &&
        (iv.isInt() || iv.isSymInt() || iv.isDouble() || iv.isSymFloat())) {
      // can't lift ivalues nested in collections
      _compiler.lifted_ivalue_args.add(&iv);
    } else {
      try {
        collect(static_cast<uint64_t>(at::IValue::hash(iv)));
      } catch (const std::runtime_error& e) {
        std::string msg =
            "Compiled autograd can not trace unhashable IValues, error: " +
            std::string(e.what());
        TORCH_CHECK_NOT_IMPLEMENTED(false, msg);
      }
    }
  }
  void collect(const c10::Scalar& t) {
    auto type = t.type();
    specialize_on_bytes(type);
    if (type == c10::ScalarType::Double) {
      collect(t.toDouble());
    } else if (type == c10::ScalarType::Long) {
      collect(t.toLong());
    } else if (type == c10::ScalarType::Bool) {
      collect(t.toBool());
    } else if (type == c10::ScalarType::ComplexDouble) {
      auto c = t.toComplexDouble();
      collect(c.real());
      collect(c.imag());
    } else {
      TORCH_INTERNAL_ASSERT(false);
    }
  }
  void collect(const c10::TensorOptions& t) {
    collect(t.device());
    collect(t.dtype());
    collect(t.layout());
    collect(t.requires_grad());
    collect(t.pinned_memory());
    collect(t.memory_format_opt());
  }
  void collect(const at::TensorGeometry& t) {
    collect(t.sym_sizes());
    collect(t.sym_strides());
    collect(t.sym_storage_offset());
  }
  void collect(const torch::autograd::TypeAndSize& t) {
    collect(t.sym_sizes);
    collect(t.options);
  }
  void collect(const c10::Device& t) {
    collect(t.type());
    collect(t.index());
  }
  void collect(const std::string& t) {
    collect_size(t.size());
    for (char c : t) {
      collect(c);
    }
  }
  void collect(const caffe2::TypeMeta& t) {
    specialize_on_bytes(t.id());
  }
  void collect(const std::shared_ptr<Node>& t) {
    // Note: this is only capturing the ID of the node not everything
    // contained inside it.  This is used for tracking connections between
    // nodes and the actual details of the node itself must be handled by
    // a seperate call to `node->compiled_args()`.
    if (cond((bool)t)) {
      collect(_compiler.node_calls.lookup(t));
    }
  }
  void collect(const NodeCall& t) {
    collect_size(t.id);
    collect(t.graph_output);
    collect_hooks_from(t.node.get());
  }
  void collect(const Edge& t) {
    if (cond(t.is_valid())) {
      collect_size(_compiler.node_calls.lookup(t.function).id);
      collect_size(t.input_nr);
      collect(t.function->input_metadata(t.input_nr)); // for validate_outputs
    }
  }
  void collect(const InputMetadata& t) {
    TORCH_CHECK(!t.is_nested_tensor(), "NestedTensor not implemented");
    collect(t.options());
    collect(t.is_tensor_subclass());
    collect(t.shape_as_dim_vector());
  }
  void collect(const VariableInfo& t) {
    collect(t.layout);
    collect(t.device);
    collect(t.scalar_type);
    collect(t.size);
    collect(t.requires_grad);
    collect(t.is_empty);
  }
  bool cond(bool cond) {
    collect(cond);
    return cond;
  }

#define COLLECT_AS_BYTES(T) \
  void collect(T t) {       \
    specialize_on_bytes(t); \
  }
  COLLECT_AS_BYTES(c10::ScalarType)
  COLLECT_AS_BYTES(c10::DeviceType)
  COLLECT_AS_BYTES(c10::Layout)
  COLLECT_AS_BYTES(c10::MemoryFormat)
  COLLECT_AS_BYTES(int8_t)
  COLLECT_AS_BYTES(int16_t)
  COLLECT_AS_BYTES(int32_t)
  COLLECT_AS_BYTES(int64_t)
  COLLECT_AS_BYTES(uint8_t)
  COLLECT_AS_BYTES(uint16_t)
  COLLECT_AS_BYTES(uint32_t)
  COLLECT_AS_BYTES(uint64_t)
  COLLECT_AS_BYTES(bool)
  COLLECT_AS_BYTES(float)
  COLLECT_AS_BYTES(double)
#undef COLLECT_AS_BYTES

  void collect_hooks_from(Node* fn) {
    TORCH_CHECK(
        fn->retains_grad_hooks().empty(),
        "retains_grad_hooks not implemented for compiled autograd");
    for (auto& i : fn->tensor_pre_hooks()) {
      i->compiled_args(*this);
    }
    for (auto& i : fn->pre_hooks()) {
      i->compiled_args(*this);
    }
    for (auto& i : fn->post_hooks()) {
      i->compiled_args(*this);
    }
    collect_size(_node_call.tensor_pre_hooks.size());
    collect_size(_node_call.pre_hooks.size());
    collect_size(_node_call.post_hooks.size());
    for (const auto& h : _node_call.tensor_pre_hooks) {
      collect_size(static_cast<size_t>(h.second));
    }
  }

  CacheKey key() const {
    Node* node = _node_call.node.get();
    return CacheKey(
        typeid(*node), _specialization_key, _specialization_key_size);
  }

  size_t add_backward(c10::SafePyObject&& obj) {
    return _compiler.emplace_hook(std::move(obj));
  }

  size_t add_backward_state(c10::SafePyObject&& obj) {
    return _compiler.emplace_hook(std::move(obj));
  }

  void add_tensor_pre_hook(c10::SafePyObject&& obj, int index) {
    auto fn_id = _compiler.emplace_hook(std::move(obj));
    collect_size(fn_id);
    _node_call.tensor_pre_hooks.emplace_back(fn_id, index);
  }

  void add_pre_hook(c10::SafePyObject&& obj) {
    auto fn_id = _compiler.emplace_hook(std::move(obj));
    collect_size(fn_id);
    _node_call.pre_hooks.emplace_back(fn_id);
  }

  void add_post_hook(c10::SafePyObject&& obj) {
    auto fn_id = _compiler.emplace_hook(std::move(obj));
    collect_size(fn_id);
    _node_call.post_hooks.emplace_back(fn_id);
  }

  void add_post_acc_grad_hook(c10::SafePyObject&& obj) {
    auto fn_id = _compiler.emplace_hook(std::move(obj));
    collect_size(fn_id);
    _node_call.post_acc_grad_hooks.emplace_back(fn_id);
  }

  // Need to template the size_t to silence internal 32-bit build errors due to
  // a mix of -Werror, -Wtautological-type-limit-compare and
  // -Wunknown-pragmas
  template <typename T>
  std::enable_if_t<std::is_unsigned_v<T>, void> collect_size(T s) {
    // we expect sizes to be small, so try to cram them into a single byte
    constexpr uint8_t encode_as_u64 = std::numeric_limits<uint8_t>::max();
    constexpr uint8_t encode_as_u32 = encode_as_u64 - 1;
    constexpr uint8_t encode_as_u16 = encode_as_u64 - 2;
    if (C10_UNLIKELY(s >= encode_as_u16)) {
      // first write a byte indicating the path we followed, then the data
      if (s <= std::numeric_limits<uint16_t>::max()) {
        // 3 bytes
        specialize_on_bytes(encode_as_u16);
        specialize_on_bytes(static_cast<uint16_t>(s));
      } else if (s <= std::numeric_limits<uint32_t>::max()) {
        // 5 bytes
        specialize_on_bytes(encode_as_u32);
        specialize_on_bytes(static_cast<uint32_t>(s));
      } else {
        // 9 bytes
        specialize_on_bytes(encode_as_u64);
        specialize_on_bytes(s);
      }
    } else {
      // happy case, 1 byte
      specialize_on_bytes(static_cast<uint8_t>(s));
    }
  }

  SizeInput::DynType set_default_dyn_type(SizeInput::DynType default_dyn_type) {
    return std::exchange(_compiler.default_dyn_type, default_dyn_type);
  }

  CompiledNodeArgs(AutogradCompilerCall& compiler, NodeCall& node_call)
      : _compiler(compiler),
        _node_call(node_call),
        _specialization_key(
            // NOLINTNEXTLINE(cppcoreguidelines-no-malloc)
            (uint8_t*)std::malloc(_specialization_key_storage)) {}
  CompiledNodeArgs(const CompiledNodeArgs&) = delete;
  CompiledNodeArgs(CompiledNodeArgs&&) = delete;
  CompiledNodeArgs& operator=(const CompiledNodeArgs&) = delete;
  CompiledNodeArgs& operator=(CompiledNodeArgs&&) = delete;
  ~CompiledNodeArgs() {
    // NOLINTNEXTLINE(cppcoreguidelines-no-malloc)
    std::free(_specialization_key);
  }

 private:
  template <typename T>
  void specialize_on_bytes(const T& t) {
    while (C10_UNLIKELY(
        _specialization_key_size + sizeof(T) > _specialization_key_storage)) {
      _specialization_key_storage *= 2;
      // NOLINTNEXTLINE(cppcoreguidelines-no-malloc)
      _specialization_key = (uint8_t*)std::realloc(
          _specialization_key, _specialization_key_storage);
    }
    std::memcpy(_specialization_key + _specialization_key_size, &t, sizeof(T));
    _specialization_key_size += sizeof(T);
  }

  AutogradCompilerCall& _compiler;
  NodeCall& _node_call;
  size_t _specialization_key_size{0};
  size_t _specialization_key_storage{1024};
  uint8_t* _specialization_key;
};

struct TraceState {
  TraceState(std::vector<std::optional<c10::SymInt>>&& ss, size_t num_outputs)
      : sym_sizes(std::move(ss)), outputs(num_outputs) {}

  void debug_asserts() {
    TORCH_INTERNAL_ASSERT(sym_sizes_index == sym_sizes.size());
  }
  std::optional<c10::SymInt> next_sym_size() {
    TORCH_INTERNAL_ASSERT(sym_sizes_index < sym_sizes.size());
    return sym_sizes[sym_sizes_index++];
  }

  size_t sym_sizes_index{0};
  std::vector<std::optional<c10::SymInt>> sym_sizes;
  variable_list outputs;
};

class SwapSavedVariables {
  // SwapSavedVariables is used during the tracing/compilation phase after a
  // cache-miss. It swaps any 'lifted' inputs (tensors, symints) to proxy nodes,
  // allows tracing to happen, then swaps them back afterwards.
 public:
  void before(at::Tensor& t) {
    TensorArg& arg = compiler.tensor_args.lookup(t);
    stashed_tensors.save(&t, std::move(t));
    if (arg.defined()) {
      TORCH_INTERNAL_ASSERT(arg.proxy_tensor.defined());
      t = arg.proxy_tensor;
    }
  }
  void after(at::Tensor& t) {
    stashed_tensors.restore(&t);
  }

  void before(SavedVariable& t) {
    TensorArg& arg = compiler.tensor_args.lookup(t);
    stashed_variables.save(&t, std::move(t));
    if (arg.defined()) {
      bool prior = at::SavedTensorDefaultHooks::set_tracing(true);
      TORCH_INTERNAL_ASSERT(arg.proxy_tensor.defined());
      t = SavedVariable(arg.proxy_tensor, false);
      at::SavedTensorDefaultHooks::set_tracing(prior);
    }
  }
  void after(SavedVariable& t) {
    stashed_variables.restore(&t);
  }

  void before(c10::SymInt& t) {
    stashed_symints.save(&t, c10::SymInt(t));
    auto opt_value = state.next_sym_size();
    if (opt_value.has_value()) {
      t = *opt_value; // dynamic shape
    }
  }
  void after(c10::SymInt& t) {
    stashed_symints.restore(&t);
  }

  void before(at::IValue& iv) {
    if (iv.isTensor()) {
      before(iv.toTensor());
    } else {
      stashed_ivalues.save(&iv, at::IValue(iv));
      if (iv.isInt() || iv.isSymInt() || iv.isDouble() || iv.isSymFloat()) {
        iv = compiler.lifted_ivalue_args.next_proxy(&iv);
      }
    }
  }

  void after(at::IValue& t) {
    if (t.isTensor()) {
      after(t.toTensor());
    } else {
      stashed_ivalues.restore(&t);
    }
  }

  void before(Edge& t) {
    if (t.is_valid()) {
      // need for symints used by validate_outputs
      before(t.function->mutable_input_metadata(t.input_nr));
    }
  }
  void after(Edge& t) {
    if (t.is_valid()) {
      after(t.function->mutable_input_metadata(t.input_nr));
    }
  }
  void before(InputMetadata& t) {
    before(t.mutable_shape_as_dim_vector());
  }
  void after(InputMetadata& t) {
    after(t.mutable_shape_as_dim_vector());
  }
  void before(at::TensorGeometry& t) {
    before(t.mutable_sizes());
    before(t.mutable_strides());
    before(t.mutable_storage_offset());
    t.recompute();
  }
  void after(at::TensorGeometry& t) {
    after(t.mutable_sizes());
    after(t.mutable_strides());
    after(t.mutable_storage_offset());
    t.recompute();
  }
  void before(torch::autograd::TypeAndSize& t) {
    before(t.sym_sizes);
    before(t.options);
  }
  void after(torch::autograd::TypeAndSize& t) {
    after(t.sym_sizes);
    after(t.options);
  }
  void before(VariableInfo& t) {
    before(t.size);
  }
  void after(VariableInfo& t) {
    after(t.size);
  }

  template <typename T>
  void before(std::vector<T>& t) {
    for (T& i : t) {
      before(i);
    }
  }
  template <typename T>
  void after(std::vector<T>& t) {
    for (T& i : t) {
      after(i);
    }
  }
  template <typename T, unsigned N>
  void before(c10::SmallVector<T, N>& t) {
    for (T& i : t) {
      before(i);
    }
  }
  template <typename T, unsigned N>
  void after(c10::SmallVector<T, N>& t) {
    for (T& i : t) {
      after(i);
    }
  }

  template <typename T>
  void before(c10::OptionalArray<T>& t) {
    before(t.list);
  }
  template <typename T>
  void after(c10::OptionalArray<T>& t) {
    after(t.list);
  }

  template <typename T>
  void before(std::optional<T>& t) {
    if (t.has_value()) {
      before(*t);
    }
  }
  template <typename T>
  void after(std::optional<T>& t) {
    if (t.has_value()) {
      after(*t);
    }
  }

  template <typename V>
  void before(ska::flat_hash_map<std::string, V>& m) {
    std::vector<std::string> keys;
    keys.reserve(m.size());
    std::transform(
        m.begin(), m.end(), std::back_inserter(keys), [](const auto& entry) {
          return entry.first;
        });
    std::sort(keys.begin(), keys.end());
    for (auto& k : keys) {
      before(m.at(k));
    }
  }

  template <typename V>
  void after(ska::flat_hash_map<std::string, V>& m) {
    for (auto& [_, v] : m) {
      after(v);
    }
  }

#define NO_OP_VISIT(T)     \
  void before(const T&) {} \
  void after(const T&) {}
  NO_OP_VISIT(caffe2::TypeMeta)
  NO_OP_VISIT(c10::Device)
  NO_OP_VISIT(c10::DeviceType)
  NO_OP_VISIT(c10::Layout)
  NO_OP_VISIT(c10::MemoryFormat)
  NO_OP_VISIT(c10::ScalarType)
  NO_OP_VISIT(c10::Scalar)
  NO_OP_VISIT(c10::TensorOptions)
  NO_OP_VISIT(std::string)
  NO_OP_VISIT(int64_t)
  NO_OP_VISIT(bool)
  NO_OP_VISIT(double)
#undef NO_OP_VISIT

  SwapSavedVariables(
      AutogradCompilerCall& c,
      TraceState& s,
      PyObject* p,
      const NodeCall& n)
      : compiler(c), state(s), py_compiler(p), curr_node_call(n) {}

  PyObject* get_py_compiler() {
    return py_compiler;
  }

  const NodeCall& get_curr_node_call() {
    return curr_node_call;
  }

  void debug_asserts() {
    stashed_variables.debug_assert();
    stashed_tensors.debug_assert();
    stashed_symints.debug_assert();
  }

 private:
  template <typename T>
  struct Stashed {
    Stashed(T&& v) : prior_value(std::move(v)) {}
    T prior_value;
    // Note: we need count here to support duplicate calls to before()
    // which happen when we have multiple autograd::Edge objects pointing
    // to the same autograd::Node
    int count = 1;
  };

  template <typename T>
  struct StashedVars : public std::unordered_map<const T*, Stashed<T>> {
    void save(const T* key, T&& value) {
      auto [it, inserted] = this->try_emplace(key, std::move(value));
      if (!inserted) {
        // keep the value from the prior save()
        it->second.count++;
      }
    }
    void restore(T* var) {
      auto it = this->find(var);
      TORCH_INTERNAL_ASSERT(it != this->end(), "missing before())");
      if (--it->second.count == 0) {
        // restore the value on the last restore()
        *var = std::move(it->second.prior_value);
        this->erase(it);
      }
    }
    void debug_assert() {
      TORCH_INTERNAL_ASSERT(this->empty(), "missing call to after()");
    }
  };

  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  AutogradCompilerCall& compiler;
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  TraceState& state;
  // This is a borrowed reference, we do not increment ownership, or lower it,
  // it's lifecycle is entirely longer than this objects.
  PyObject* py_compiler;
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  const NodeCall& curr_node_call;

  // These mappings are used to save the prior values when we overwrite things
  // in before(). In after(), we use these to cleanup after ourselves.
  StashedVars<SavedVariable> stashed_variables;
  StashedVars<at::Tensor> stashed_tensors;
  StashedVars<c10::SymInt> stashed_symints;
  StashedVars<at::IValue> stashed_ivalues;
};

} // namespace torch::dynamo::autograd

template <>
struct std::hash<torch::dynamo::autograd::CacheKey> {
  size_t operator()(const torch::dynamo::autograd::CacheKey& k) const {
    return k.hash();
  }
};