1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
#pragma once
#include <torch/csrc/inductor/aoti_runtime/utils.h>
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
#include <cassert>
#include <cstdint>
#include <cstring>
namespace torch::aot_inductor {
// Can't use c10::ArrayRef because it's not truly header-only and
// pulls in other c10 headers. This is (sadly) copy-pasted and
// adapted.
template <typename T>
class MiniArrayRef final {
public:
using iterator = T*;
using const_iterator = const T*;
using size_type = size_t;
using value_type = T;
using reverse_iterator = std::reverse_iterator<iterator>;
private:
/// The start of the array, in an external buffer.
T* Data;
/// The number of elements.
size_type Length;
public:
/// @name Constructors
/// @{
/// Construct an empty MiniArrayRef.
/* implicit */ constexpr MiniArrayRef() : Data(nullptr), Length(0) {}
/// Construct an MiniArrayRef from a single element.
// TODO Make this explicit
constexpr MiniArrayRef(const T& OneElt) : Data(&OneElt), Length(1) {}
/// Construct an MiniArrayRef from a pointer and length.
constexpr MiniArrayRef(T* data, size_t length) : Data(data), Length(length) {}
/// Construct an MiniArrayRef from a range.
constexpr MiniArrayRef(T* begin, T* end) : Data(begin), Length(end - begin) {}
template <
typename Container,
typename = std::enable_if_t<std::is_same_v<
std::remove_const_t<decltype(std::declval<Container>().data())>,
T*>>>
/* implicit */ MiniArrayRef(Container& container)
: Data(container.data()), Length(container.size()) {}
/// Construct an MiniArrayRef from a std::vector.
// The enable_if stuff here makes sure that this isn't used for
// std::vector<bool>, because MiniArrayRef can't work on a std::vector<bool>
// bitfield.
template <typename A>
/* implicit */ MiniArrayRef(const std::vector<T, A>& Vec)
: Data(Vec.data()), Length(Vec.size()) {
static_assert(
!std::is_same_v<T, bool>,
"MiniArrayRef<bool> cannot be constructed from a std::vector<bool> bitfield.");
}
/// Construct an MiniArrayRef from a std::array
template <size_t N>
/* implicit */ constexpr MiniArrayRef(std::array<T, N>& Arr)
: Data(Arr.data()), Length(N) {}
/// Construct an MiniArrayRef from a C array.
template <size_t N>
// NOLINTNEXTLINE(*c-array*)
/* implicit */ constexpr MiniArrayRef(T (&Arr)[N]) : Data(Arr), Length(N) {}
// /// Construct an MiniArrayRef from an empty C array.
/* implicit */ constexpr MiniArrayRef(const volatile void* Arr)
: Data(nullptr), Length(0) {}
/// Construct an MiniArrayRef from a std::initializer_list.
/* implicit */ constexpr MiniArrayRef(const std::initializer_list<T>& Vec)
: Data(
std::begin(Vec) == std::end(Vec) ? static_cast<T*>(nullptr)
: std::begin(Vec)),
Length(Vec.size()) {}
/// @}
/// @name Simple Operations
/// @{
constexpr iterator begin() const {
return Data;
}
constexpr iterator end() const {
return Data + Length;
}
// These are actually the same as iterator, since MiniArrayRef only
// gives you const iterators.
constexpr const_iterator cbegin() const {
return Data;
}
constexpr const_iterator cend() const {
return Data + Length;
}
constexpr reverse_iterator rbegin() const {
return reverse_iterator(end());
}
constexpr reverse_iterator rend() const {
return reverse_iterator(begin());
}
/// empty - Check if the array is empty.
constexpr bool empty() const {
return Length == 0;
}
constexpr T* data() const {
return Data;
}
/// size - Get the array size.
constexpr size_t size() const {
return Length;
}
/// equals - Check for element-wise equality.
constexpr bool equals(MiniArrayRef RHS) const {
return Length == RHS.Length && std::equal(begin(), end(), RHS.begin());
}
/// @}
/// @name Operator Overloads
/// @{
constexpr const T& operator[](size_t Index) const {
return Data[Index];
}
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
std::enable_if_t<std::is_same_v<U, T>, MiniArrayRef<T>>& operator=(
// NOLINTNEXTLINE(cppcoreguidelines-missing-std-forward)
U&& Temporary) = delete;
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
std::enable_if_t<std::is_same_v<U, T>, MiniArrayRef<T>>& operator=(
std::initializer_list<U>) = delete;
};
using MiniIntArrayRef = MiniArrayRef<int64_t>;
static_assert(
sizeof(MiniIntArrayRef) == sizeof(void*) + sizeof(size_t),
"changing the size of MiniArrayRef breaks ABI compatibility!");
inline bool is_contiguous_strides_for_shape(
int64_t ndim,
const int64_t* strides_ptr,
const int64_t* sizes_ptr) {
int64_t z = 1;
for (int64_t d = ndim - 1; d >= 0; d--) {
const auto& size_d = sizes_ptr[d];
if (size_d != 1) {
if (strides_ptr[d] == z) {
z *= size_d;
} else {
return false;
}
}
}
return true;
}
// Shim for AOTI generated code to pretend a raw array works like an
// AtenTensorHandle.
template <typename T>
class ArrayRefTensor {
public:
ArrayRefTensor() = default;
explicit ArrayRefTensor(
MiniArrayRef<T> arr,
MiniArrayRef<const int64_t> sizes,
MiniArrayRef<const int64_t> strides,
int32_t device_type,
int32_t device_idx)
: arrayRef_(arr),
sizes_(sizes),
strides_(strides),
device_type_(device_type),
device_idx_(device_idx) {
assert(sizes.size() == strides.size());
assert(is_contiguous_strides_for_shape(
sizes.size(), strides.data(), sizes.data()));
}
AtenTensorHandle expensiveCopyToTensor() const {
AtenTensorHandle result = nullptr;
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided(
sizes_.size(),
sizes_.data(),
strides_.data(),
aoti_torch_dtype<std::remove_const_t<T>>(),
device_type_,
device_idx_,
&result));
void* dataPtr = nullptr;
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_data_ptr(result, &dataPtr));
std::memcpy(dataPtr, data(), numel() * sizeof(T));
return result;
}
// We need to look the same as RAIIAtenTensorHandle, which returns
// an owning AtenTensorHandle from release(). So, we allocate one!
AtenTensorHandle release() {
return expensiveCopyToTensor();
}
AtenTensorHandle borrowAsTensor() const {
AtenTensorHandle result = nullptr;
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_create_tensor_from_blob_v2(
data(),
sizes_.size(),
sizes_.data(),
strides_.data(),
0,
aoti_torch_dtype<std::remove_const_t<T>>(),
device_type_,
device_idx_,
&result,
aoti_torch_layout_strided(),
nullptr,
0));
return result;
}
// We don't need to free any memory.
void reset() {}
auto sizes() const {
return sizes_;
}
auto strides() const {
return strides_;
}
auto device_type() const {
return device_type_;
}
auto device_idx() const {
return device_idx_;
}
T* data() const {
return arrayRef_.data();
}
auto numel() const {
return arrayRef_.size();
}
void set_arrayref(MiniArrayRef<T> new_arrayref) {
arrayRef_ = new_arrayref;
}
private:
MiniArrayRef<T> arrayRef_;
// We expect generated code to have statically available sizes &
// strides for us.
MiniArrayRef<const int64_t> sizes_;
MiniArrayRef<const int64_t> strides_;
int32_t device_type_ = 0;
int32_t device_idx_ = 0;
// We continue to zero-initialize this field in case we repurpose
// the space later; having predictable contents can only help.
int32_t unusedDoNotRemoveForABICompatibility_ = 0;
};
static_assert(
sizeof(ArrayRefTensor<int>) ==
3 * sizeof(MiniIntArrayRef) + 3 * sizeof(int32_t) +
(alignof(ArrayRefTensor<int>) > 4 ? sizeof(int32_t) : 0),
"changing the size of ArrayRefTensor breaks ABI compatibility!");
template <typename T>
inline ArrayRefTensor<T> reinterpret_tensor_wrapper(
const ArrayRefTensor<T>& self,
int64_t ndim,
const int64_t* sizes_ptr,
const int64_t* strides_ptr,
int64_t storage_offset) {
// REVIEW: we should add a way to build the DSO in debug mode during
// tests so we can have checks like this!
assert(is_contiguous_strides_for_shape(ndim, strides_ptr, sizes_ptr));
return ArrayRefTensor<T>(
MiniArrayRef<T>(
self.data() + storage_offset, self.numel() - storage_offset),
MiniArrayRef<const int64_t>(sizes_ptr, ndim),
MiniArrayRef<const int64_t>(strides_ptr, ndim),
self.device_type(),
self.device_idx());
}
template <typename T>
inline T* get_data_ptr_wrapper(ArrayRefTensor<T>& tensor) {
return tensor.data();
}
template <typename T>
inline T* get_data_ptr_wrapper(const MiniArrayRef<T>& arr) {
return arr.data();
}
template <typename T>
inline const ArrayRefTensor<T>& unwrap_raii_handle_if_needed(
const ArrayRefTensor<T>& tensor) {
return tensor;
}
template <typename T>
inline ArrayRefTensor<T>& unwrap_raii_handle_if_needed(
ArrayRefTensor<T>& tensor) {
return tensor;
}
template <typename T>
inline const ArrayRefTensor<T>& wrap_with_raii_handle_if_needed(
const ArrayRefTensor<T>& tensor) {
return tensor;
}
template <typename T>
inline ArrayRefTensor<T>& wrap_with_raii_handle_if_needed(
ArrayRefTensor<T>& tensor) {
return tensor;
}
template <typename T>
inline RAIIAtenTensorHandle expensive_copy_to_tensor_if_needed(
const ArrayRefTensor<T>& tensor) {
return tensor.expensiveCopyToTensor();
}
inline AtenTensorHandle expensive_copy_to_tensor_if_needed(
AtenTensorHandle handle) {
return handle;
}
template <typename T>
const T& copy_arrayref_tensor_to_tensor(const T& t) {
return t;
}
template <typename T>
RAIIAtenTensorHandle copy_arrayref_tensor_to_tensor(
const ArrayRefTensor<T>& art) {
return art.expensiveCopyToTensor();
}
template <typename T>
const T& borrow_arrayref_tensor_as_tensor(const T& t) {
return t;
}
template <typename T>
RAIIAtenTensorHandle borrow_arrayref_tensor_as_tensor(
const ArrayRefTensor<T>& art) {
return art.borrowAsTensor();
}
} // namespace torch::aot_inductor
|