File: fold_conv_bn.h

package info (click to toggle)
pytorch 2.6.0%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 161,672 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (35 lines) | stat: -rw-r--r-- 970 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#pragma once

#include <torch/csrc/jit/api/module.h>

namespace torch::jit {

/** \brief Fold Conv2d-BatchNorm2d into Conv2d in all methods of this
 * module and all its submodules, forward is included by default.
 *
 * The weight and bias of the Conv2d are correspondingly updated. Should only be
 * used on modules in eval mode.
 */
TORCH_API Module FoldConvBatchNorm(const Module& module);

struct TORCH_API ConvBNParameters {
  at::Tensor conv_w;
  at::Tensor conv_b;
  at::Tensor bn_rm;
  at::Tensor bn_rv;
  double bn_eps = 0.0;
  at::Tensor bn_w;
  at::Tensor bn_b;
};

/**
 * Given the current weight and bias tensors of a Conv module and parameters
 * of the BatchNorm module we're folding with, compute the updated values
 * for the weight and bias.
 *
 * The function is basically copied from torch/nn/utils/fusion.py
 */
TORCH_API std::tuple<at::Tensor, at::Tensor> computeUpdatedConvWeightAndBias(
    const ConvBNParameters& p);

} // namespace torch::jit