1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
|
# mypy: allow-untyped-decorators
from typing import cast, List, NamedTuple, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch.distributed.device_mesh import _get_device_handle
from torch.distributed.distributed_c10d import ReduceOp
from torch.distributed.tensor import DTensor
from ._fsdp_common import (
_get_dim0_padded_size,
_raise_assert_with_print,
_to_dtype_if_needed,
compiled_autograd_enabled,
)
from ._fsdp_param import FSDPParam, ShardedState
class AllGatherResult(NamedTuple):
all_gather_output: torch.Tensor
all_gather_event: Optional[torch.Event]
all_gather_work: Optional[dist.distributed_c10d.Work]
# For each parameter, the all-gather input dtype for each input
param_all_gather_input_dtypes: List[List[torch.dtype]]
# For each parameter, the all-gather input numel for each input
param_all_gather_input_numels: List[List[int]]
# 1D flattened version of `param_all_gather_input_numels` saved to avoid
# CPU overhead from recomputing
all_gather_input_split_sizes: List[int]
lib = torch.library.Library("fsdp", "FRAGMENT") # noqa: TOR901
lib.define(
"""
all_gather_copy_in(
Tensor[] all_gather_inputs,
SymInt[] inp_split_sizes,
SymInt all_gather_input_numel,
SymInt world_size,
SymInt rank,
ScalarType dtype,
Device device
) -> (Tensor, Tensor)
"""
)
@torch.library.impl(lib, "all_gather_copy_in", "Meta")
def all_gather_copy_in_meta(
all_gather_inputs: List[torch.Tensor],
inp_split_sizes: List[int],
all_gather_input_numel: int,
world_size: int,
rank: int,
dtype: torch.dtype,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
all_gather_output = torch.empty(
(all_gather_input_numel * world_size,), dtype=dtype, device="meta"
)
all_gather_input = all_gather_output.narrow(
0, all_gather_input_numel * rank, all_gather_input_numel
)
return all_gather_input, all_gather_output
@torch.library.impl(lib, "all_gather_copy_in", "CUDA")
@torch.library.impl(lib, "all_gather_copy_in", "CPU")
def all_gather_copy_in_cuda(
all_gather_inputs: List[torch.Tensor],
inp_split_sizes: List[int],
all_gather_input_numel: int,
world_size: int,
rank: int,
dtype: torch.dtype,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
all_gather_output = torch.empty(
(all_gather_input_numel * world_size,), dtype=dtype, device=device
)
all_gather_input = all_gather_output.narrow(
0, all_gather_input_numel * rank, all_gather_input_numel
)
foreach_copy_dsts = torch.split(all_gather_input, inp_split_sizes)
with torch.no_grad():
torch._foreach_copy_(foreach_copy_dsts, all_gather_inputs)
return all_gather_input, all_gather_output
lib.define(
"split_with_sizes_copy(Tensor all_gather_output, SymInt[] all_gather_input_split_sizes, int dim=0, *, Tensor(a!)[] out) -> ()"
)
@torch.library.impl(lib, "split_with_sizes_copy", "Meta")
@torch.library.impl(lib, "split_with_sizes_copy", "CUDA")
@torch.library.impl(lib, "split_with_sizes_copy", "CPU")
def split_with_sizes_copy(
all_gather_output: torch.Tensor,
all_gather_input_split_sizes: List[int],
dim: int,
out: List[torch.Tensor],
) -> None:
torch.split_with_sizes_copy(
all_gather_output, all_gather_input_split_sizes, dim=dim, out=out
)
lib.define(
"chunk_cat(Tensor[] tensors, int dim, int num_chunks, *, Tensor(a!) out) -> ()"
)
@torch.library.impl(lib, "chunk_cat", "Meta")
@torch.library.impl(lib, "chunk_cat", "CUDA")
@torch.library.impl(lib, "chunk_cat", "CPU")
def chunk_cat(
tensors: List[torch.Tensor],
dim: int,
num_chunks: int,
out: torch.Tensor,
) -> None:
torch._chunk_cat(tensors, dim, num_chunks, out=out)
@torch.no_grad()
def foreach_all_gather(
fsdp_params: List[FSDPParam],
group: dist.ProcessGroup,
async_op: bool,
all_gather_copy_in_stream: torch.Stream,
all_gather_stream: torch.Stream,
device: torch.device,
) -> Optional[AllGatherResult]:
world_size, rank = group.size(), group.rank()
device_handle = _get_device_handle(device.type)
with device_handle.stream(all_gather_copy_in_stream):
param_all_gather_inputs = _get_param_all_gather_inputs(fsdp_params)
(
param_all_gather_input_dtypes,
param_all_gather_input_numels,
dtype,
) = _get_all_gather_input_metadatas(param_all_gather_inputs)
if dtype == torch.uint8:
all_gather_inputs = [
t.view(torch.uint8) for ts in param_all_gather_inputs for t in ts
]
else:
all_gather_inputs = [t for ts in param_all_gather_inputs for t in ts]
inp_split_sizes = [t.numel() for t in all_gather_inputs]
all_gather_input_numel = sum(inp_split_sizes)
all_gather_input, all_gather_output = torch.ops.fsdp.all_gather_copy_in(
all_gather_inputs,
inp_split_sizes,
all_gather_input_numel,
world_size,
rank,
dtype,
device,
)
del param_all_gather_inputs
all_gather_stream.wait_stream(all_gather_copy_in_stream)
with device_handle.stream(all_gather_stream):
all_gather_work = dist.all_gather_into_tensor(
output_tensor=all_gather_output,
input_tensor=all_gather_input,
group=group,
async_op=async_op,
)
all_gather_event = all_gather_stream.record_event()
return AllGatherResult(
all_gather_output,
all_gather_event,
all_gather_work,
param_all_gather_input_dtypes,
param_all_gather_input_numels,
inp_split_sizes,
)
@torch.no_grad()
def _get_param_all_gather_inputs(
fsdp_params: List[FSDPParam],
) -> List[List[torch.Tensor]]:
if compiled_autograd_enabled():
return [fsdp_param.all_gather_inputs for fsdp_param in fsdp_params]
# Intentionally try to run a fast-path that bypasses abstractions for the
# common FSDP case of bf16/fp32 mixed precision in order to use foreach
# copy for lower CPU overhead and more efficient copying in eager
def use_foreach_copy(fsdp_param: FSDPParam) -> bool:
return (
fsdp_param.param_dtype is not None
and not fsdp_param.offload_to_cpu
and not hasattr(fsdp_param._sharded_local_tensor, "fsdp_pre_all_gather")
)
param_all_gather_inputs: List[List[torch.Tensor]] = [[] for _ in fsdp_params]
foreach_copy_indices: List[int] = []
foreach_copy_inputs: List[torch.Tensor] = []
foreach_copy_input_numels: List[int] = []
# 1st pass: for foreach-copy parameters, get inputs and metadata for the
# foreach copy, and for the others, actually get their all-gather inputs
for i, fsdp_param in enumerate(fsdp_params):
if use_foreach_copy(fsdp_param):
foreach_copy_indices.append(i)
all_gather_input = (
fsdp_param._sharded_param_data
if fsdp_param.sharded_state == ShardedState.SHARDED
else cast(torch.Tensor, fsdp_param._sharded_post_forward_param_data)
)
foreach_copy_inputs.append(all_gather_input)
foreach_copy_input_numels.append(all_gather_input.numel())
else:
param_all_gather_inputs[i] = fsdp_param.all_gather_inputs
# 2nd pass: use foreach copy to compute the remaining all-gather inputs
if foreach_copy_inputs:
fsdp_param_0 = fsdp_params[foreach_copy_indices[0]]
param_dtype, device = fsdp_param_0.param_dtype, fsdp_param_0.device
flat_foreach_copy_input = torch.empty(
(sum(foreach_copy_input_numels),), device=device, dtype=param_dtype
)
splits = torch.split(flat_foreach_copy_input, foreach_copy_input_numels)
torch._foreach_copy_(splits, foreach_copy_inputs)
for i, split in zip(foreach_copy_indices, splits):
param_all_gather_inputs[i] = [split]
return param_all_gather_inputs
@torch.no_grad()
def foreach_all_gather_copy_out(
all_gather_result: AllGatherResult,
fsdp_params: List[FSDPParam],
group: dist.ProcessGroup,
) -> None:
(
all_gather_output,
all_gather_event,
all_gather_work,
param_all_gather_input_dtypes,
param_all_gather_input_numels,
all_gather_input_split_sizes,
) = all_gather_result
_dtype, device = all_gather_output.dtype, all_gather_output.device
device_handle = _get_device_handle(device.type)
if all_gather_event is not None: # sync op
device_handle.current_stream().wait_event(all_gather_event)
if isinstance(all_gather_work, dist.distributed_c10d.Work): # async op
all_gather_work.wait()
world_size, device = group.size(), all_gather_output.device
split_with_sizes_out: List[torch.Tensor] = []
shard_i_copy_infos: List[Tuple[FSDPParam, List[torch.Tensor]]] = []
for all_gather_input_numels, all_gather_input_dtypes, fsdp_param in zip(
param_all_gather_input_numels, param_all_gather_input_dtypes, fsdp_params
):
# NOTE: Under compile, make sure we always recreate all_gather_outputs
# per AllGather. See [Note: Invariants for torch.compile Traceable FSDP2].
force_recreate = compiled_autograd_enabled()
fsdp_param.init_all_gather_outputs(
all_gather_input_numels,
all_gather_input_dtypes,
world_size,
device,
force_recreate=force_recreate,
)
if not force_recreate:
fsdp_param.alloc_all_gather_outputs()
param_all_gather_outputs = fsdp_param.all_gather_outputs
if fsdp_param.fsdp_placement.dim != 0:
# Copy to a temporary and then chunk-cat into the final all-gather
# output tensors
param_all_gather_outputs = [
torch.empty_like(t) for t in param_all_gather_outputs
]
shard_i_copy_infos.append((fsdp_param, param_all_gather_outputs))
split_with_sizes_out.extend(param_all_gather_outputs)
all_gather_output = all_gather_output.view(world_size, -1)
if all_gather_output.dtype == torch.uint8:
out = [t.view(world_size, -1).view(torch.uint8) for t in split_with_sizes_out]
else:
out = [t.view(world_size, -1) for t in split_with_sizes_out]
torch.ops.fsdp.split_with_sizes_copy(
all_gather_output, all_gather_input_split_sizes, dim=1, out=out
)
for fsdp_param, param_all_gather_outputs in shard_i_copy_infos:
# Chunk-cat from the temporary to the final all-gather output tensors
shard_dim = fsdp_param.fsdp_placement.dim
for param_all_gather_output, target_all_gather_output in zip(
param_all_gather_outputs, fsdp_param.all_gather_outputs
):
padded_sharded_size = (
fsdp_param.padded_sharded_param_size
if fsdp_param.sharded_state == ShardedState.SHARDED
else cast(
torch.Tensor, fsdp_param._sharded_post_forward_param_data
).size()
)
pre_param_size = list(padded_sharded_size)
pre_param_size[0] *= world_size
chunks = torch.chunk(
param_all_gather_output.view(pre_param_size), world_size, dim=0
)
post_param_size = list(padded_sharded_size)
post_param_size[shard_dim] *= world_size
cat_out = target_all_gather_output.view(post_param_size)
torch.cat(chunks, dim=shard_dim, out=cat_out)
torch._C._autograd._unsafe_set_version_counter(
target_all_gather_output, target_all_gather_output._version - 1
)
@torch.no_grad()
def foreach_reduce(
fsdp_params: List[FSDPParam],
unsharded_grads: List[torch.Tensor],
reduce_scatter_group: dist.ProcessGroup,
reduce_scatter_stream: torch.Stream,
orig_dtype: torch.dtype,
reduce_dtype: Optional[torch.dtype],
device: torch.device,
reduce_scatter_reduce_op: Optional[Union[dist.ReduceOp, dist.ReduceOp.RedOpType]],
all_reduce_group: Optional[dist.ProcessGroup], # not `None` iff HSDP
all_reduce_stream: torch.Stream,
all_reduce_grads: bool,
partial_reduce_output: Optional[torch.Tensor], # only used for HSDP
) -> Tuple[
torch.Tensor,
torch.Event,
torch.Event,
Optional[torch.Tensor],
Optional[torch.Event],
Optional[torch.Tensor],
]:
"""
``unsharded_grads`` owns the references to the gradients computed by
autograd, so clearing the list frees the gradients.
"""
grad_dtypes = {grad.dtype for grad in unsharded_grads}
if len(grad_dtypes) != 1:
# Check this at runtime since it could be a real runtime error if e.g.
# fp8 weights do not produce the correct higher precision gradients
_raise_assert_with_print(
f"FSDP reduce-scatter expects uniform gradient dtype but got {grad_dtypes}"
)
grad_dtype = unsharded_grads[0].dtype
reduce_dtype = reduce_dtype or grad_dtype
predivide_factor, postdivide_factor = _get_gradient_divide_factors(
reduce_scatter_group, all_reduce_group, reduce_dtype
)
world_size = reduce_scatter_group.size()
for i, (fsdp_param, unsharded_grad) in enumerate(zip(fsdp_params, unsharded_grads)):
if (shard_dim := fsdp_param.fsdp_placement.dim) == 0:
continue
assert (
unsharded_grad.size(shard_dim) % world_size == 0
), f"Shard({shard_dim}) requires even sharding: {unsharded_grad.size()=} {world_size=}"
chunks = torch.chunk(unsharded_grad, world_size, dim=shard_dim)
unsharded_grads[i] = torch.cat(chunks, dim=0)
padded_unsharded_sizes = tuple(
_get_dim0_padded_size(grad.size(), world_size) for grad in unsharded_grads
)
reduce_scatter_input_numel = sum(s.numel() for s in padded_unsharded_sizes)
reduce_scatter_output_numel = reduce_scatter_input_numel // world_size
reduce_scatter_input = torch.empty(
(reduce_scatter_input_numel,), dtype=reduce_dtype, device=device
)
device_handle = _get_device_handle(device.type)
foreach_reduce_scatter_copy_in(unsharded_grads, reduce_scatter_input, world_size)
current_stream = device_handle.current_stream()
# Only after the copy-in finishes can we free the gradients
unsharded_grads.clear()
reduce_scatter_stream.wait_stream(current_stream)
all_reduce_input = None
all_reduce_event = None
with device_handle.stream(reduce_scatter_stream):
reduce_output = reduce_scatter_input.new_empty((reduce_scatter_output_numel,))
_div_if_needed(reduce_scatter_input, predivide_factor)
if reduce_scatter_reduce_op is None:
if predivide_factor is None:
reduce_scatter_reduce_op = ReduceOp.AVG
else:
reduce_scatter_reduce_op = ReduceOp.SUM
dist.reduce_scatter_tensor(
output=reduce_output,
input=reduce_scatter_input,
group=reduce_scatter_group,
op=reduce_scatter_reduce_op,
)
reduce_scatter_event = reduce_scatter_stream.record_event()
post_reduce_stream = reduce_scatter_stream
if all_reduce_group is not None: # HSDP
# Accumulations must run in the reduce-scatter stream
if not all_reduce_grads:
if partial_reduce_output is not None:
partial_reduce_output += reduce_output
else:
partial_reduce_output = reduce_output
return (
reduce_scatter_input,
reduce_scatter_event,
post_reduce_stream.record_event(),
all_reduce_input,
all_reduce_event,
partial_reduce_output,
)
if partial_reduce_output is not None:
reduce_output += partial_reduce_output
post_reduce_stream = all_reduce_stream
all_reduce_stream.wait_stream(reduce_scatter_stream)
with device_handle.stream(all_reduce_stream):
dist.all_reduce(
reduce_output,
group=all_reduce_group,
op=ReduceOp.AVG if predivide_factor is None else ReduceOp.SUM,
)
all_reduce_input = reduce_output
all_reduce_event = all_reduce_stream.record_event()
with device_handle.stream(post_reduce_stream):
_div_if_needed(reduce_output, postdivide_factor)
reduce_output = _to_dtype_if_needed(reduce_output, orig_dtype)
# View out and accumulate sharded gradients
flat_grad_offset = 0 # [0, reduce_scatter_output_numel - 1]
for padded_unsharded_size, fsdp_param in zip(
padded_unsharded_sizes, fsdp_params
):
# Assume even sharding for Shard(i), i > 0; otherwise would require
# copy-out for contiguous strides
new_sharded_grad = torch.as_strided(
reduce_output,
size=fsdp_param.sharded_size,
stride=fsdp_param.contiguous_sharded_stride,
storage_offset=flat_grad_offset,
)
to_accumulate_grad = fsdp_param.sharded_param.grad is not None
if fsdp_param.offload_to_cpu:
# Only overlap the D2H copy (copying to pinned memory) if not
# accumulating gradients since the CPU add kernel depends on
# the copy result and we cannot run the add as a callback
non_blocking = fsdp_param.pin_memory and not to_accumulate_grad
# Since the GPU sharded gradient is allocated in the RS stream,
# we can free it here by not keeping a ref without waiting for
# the D2H copy since future RS-stream ops run after the copy
new_sharded_grad = new_sharded_grad.to(
torch.device("cpu"), non_blocking=non_blocking
)
if non_blocking:
# Record an event on which to block the CPU thread to
# ensure that the D2H copy finishes before the optimizer
fsdp_param.grad_offload_event = reduce_scatter_stream.record_event()
if to_accumulate_grad:
assert isinstance(fsdp_param.sharded_param.grad, DTensor)
fsdp_param.sharded_param.grad._local_tensor += new_sharded_grad
else:
new_sharded_dtensor_grad = fsdp_param.to_sharded_dtensor(
new_sharded_grad
)
fsdp_param.sharded_param.grad = new_sharded_dtensor_grad
if not compiled_autograd_enabled():
for hook in (
getattr(fsdp_param.sharded_param, "_post_accumulate_grad_hooks", {})
or {}
).values():
hook(fsdp_param.sharded_param)
padded_sharded_numel = padded_unsharded_size.numel() // world_size
flat_grad_offset += padded_sharded_numel
post_reduce_event = post_reduce_stream.record_event()
# The RS output is allocated in the RS stream and used in the default
# stream (for optimizer). To ensure its memory is not reused for later
# RSs, we do not need extra synchronization since the sharded parameters
# hold refs through the end of backward.
return (
reduce_scatter_input,
reduce_scatter_event,
post_reduce_event,
all_reduce_input,
all_reduce_event,
None,
)
def foreach_reduce_scatter_copy_in(
unsharded_grads: List[torch.Tensor],
reduce_scatter_input: torch.Tensor,
world_size: int,
) -> None:
reduce_scatter_input = reduce_scatter_input.view(world_size, -1)
torch.ops.fsdp.chunk_cat(
unsharded_grads, dim=0, num_chunks=world_size, out=reduce_scatter_input
)
def _get_all_gather_input_metadatas(
param_all_gather_inputs: List[List[torch.Tensor]],
) -> Tuple[List[List[torch.dtype]], List[List[int]], torch.dtype]:
param_all_gather_input_dtypes: List[List[torch.dtype]] = []
param_all_gather_input_numels: List[List[int]] = []
all_gather_dtype = param_all_gather_inputs[0][0].dtype
for all_gather_inputs in param_all_gather_inputs:
input_dtypes: List[torch.dtype] = []
input_numels: List[int] = []
for all_gather_input in all_gather_inputs:
if all_gather_input.dtype != all_gather_dtype:
all_gather_dtype = torch.uint8
input_dtypes.append(all_gather_input.dtype)
input_numels.append(all_gather_input.numel())
param_all_gather_input_dtypes.append(input_dtypes)
param_all_gather_input_numels.append(input_numels)
return (
param_all_gather_input_dtypes,
param_all_gather_input_numels,
all_gather_dtype,
)
def _get_gradient_divide_factors(
reduce_scatter_group: dist.ProcessGroup,
all_reduce_group: Optional[dist.ProcessGroup],
reduce_dtype: torch.dtype,
) -> Union[Tuple[None, None], Tuple[float, float]]:
# For fp32/bf16, we do not need to worry about overflow/underflow, so we
# use NCCL's built-in division to avoid separate div kernels
if reduce_dtype in (torch.float32, torch.bfloat16):
return None, None
data_parallel_size = reduce_scatter_group.size()
if all_reduce_group is not None:
data_parallel_size *= all_reduce_group.size()
# Since fp16 has smaller dynamic range than fp32/bf16, we want to avoid
# overflow/underflow. For N data parallel workers, each worker computes
# g_i, and they collectively reduce (g_1 + ... + g_N) / N. To avoid
# overflow/underflow, we divide by ~sqrt(N) before/after the reduction.
factor: int = 1
while data_parallel_size % factor == 0 and data_parallel_size / factor > factor:
factor *= 2
factor = float(factor)
return (factor, data_parallel_size / factor)
def _div_if_needed(tensor: torch.Tensor, div_factor: Optional[float]) -> None:
if div_factor is not None and div_factor > 1:
tensor.div_(div_factor)
|