1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
import builtins
import copy
import dataclasses
import inspect
import io
import os
import sys
import typing
import warnings
import zipfile
from enum import auto, Enum
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Optional,
Tuple,
Type,
TYPE_CHECKING,
Union,
)
import torch
import torch.utils._pytree as pytree
from torch.fx._compatibility import compatibility
from torch.fx.passes.infra.pass_base import PassResult
from torch.fx.passes.infra.pass_manager import PassManager
from torch.utils._pytree import (
FlattenFunc,
FromDumpableContextFn,
ToDumpableContextFn,
UnflattenFunc,
)
if TYPE_CHECKING:
# Import the following modules during type checking to enable code intelligence features,
# Do not import unconditionally, as they import sympy and importing sympy is very slow
from torch._ops import OpOverload
from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint
__all__ = [
"Constraint",
"Dim",
"ExportBackwardSignature",
"ExportGraphSignature",
"ExportedProgram",
"CustomDecompTable",
"ModuleCallEntry",
"ModuleCallSignature",
"default_decompositions",
"dims",
"export",
"export_for_training",
"export_for_inference",
"load",
"register_dataclass",
"save",
"unflatten",
"FlatArgsAdapter",
"UnflattenedModule",
]
from .decomp_utils import CustomDecompTable
from .dynamic_shapes import Constraint, Dim, dims, ShapesCollection
from .exported_program import (
default_decompositions,
ExportedProgram,
ModuleCallEntry,
ModuleCallSignature,
)
from .graph_signature import ExportBackwardSignature, ExportGraphSignature
from .unflatten import FlatArgsAdapter, unflatten, UnflattenedModule
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
def export_for_training(
mod: torch.nn.Module,
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
strict: bool = True,
preserve_module_call_signature: Tuple[str, ...] = (),
) -> ExportedProgram:
"""
:func:`export_for_training` takes any nn.Module along with example inputs, and produces a traced graph representing
only the Tensor computation of the function in an Ahead-of-Time (AOT) fashion,
which can subsequently be executed with different inputs or serialized. The
traced graph (1) produces normalized operators in the all ATen operator set
(as well as any user-specified custom operators), (2) has eliminated all Python control
flow and data structures (with certain exceptions), and (3) records the set of
shape constraints needed to show that this normalization and control-flow elimination
is sound for future inputs. This API is intended for PT2 quantization training use cases
and will soon be the default IR of torch.export.export in the near future. To read further about
the motivation behind this change, please refer to
https://dev-discuss.pytorch.org/t/why-pytorch-does-not-need-a-new-standardized-operator-set/2206
With this API, and :func:`run_decompositions()`, you should be able to get inference IR with
your custom decomposition behaviour.
**Soundness Guarantee**
See :func:`export()` docstring for more details.
Args:
mod: We will trace the forward method of this module.
args: Example positional inputs.
kwargs: Optional example keyword inputs.
dynamic_shapes:
An optional argument where the type should either be:
1) a dict from argument names of ``f`` to their dynamic shape specifications,
2) a tuple that specifies dynamic shape specifications for each input in original order.
If you are specifying dynamism on keyword args, you will need to pass them in the order that
is defined in the original function signature.
The dynamic shape of a tensor argument can be specified as either
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
not required to include static dimension indices in this dict, but when they are,
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
recursively specified by using mappings or sequences of contained specifications.
strict: When enabled (default), the export function will trace the program through
TorchDynamo which will ensure the soundness of the resulting graph. Otherwise, the
exported program will not validate the implicit assumptions baked into the graph and
may cause behavior divergence between the original model and the exported one. This is
useful when users need to workaround bugs in the tracer, or simply want incrementally
enable safety in their models. Note that this does not affect the resulting IR spec
to be different and the model will be serialized in the same way regardless of what value
is passed here.
WARNING: This option is experimental and use this at your own risk.
Returns:
An :class:`ExportedProgram` containing the traced callable.
**Acceptable input/output types**
Acceptable types of inputs (for ``args`` and ``kwargs``) and outputs include:
- Primitive types, i.e. ``torch.Tensor``, ``int``, ``float``, ``bool`` and ``str``.
- Dataclasses, but they must be registered by calling :func:`register_dataclass` first.
- (Nested) Data structures comprising of ``dict``, ``list``, ``tuple``, ``namedtuple`` and
``OrderedDict`` containing all above types.
"""
from ._trace import _export_for_training
if not isinstance(mod, torch.nn.Module):
raise ValueError(
f"Expected `mod` to be an instance of `torch.nn.Module`, got {type(mod)}."
)
if isinstance(mod, torch.jit.ScriptModule):
raise ValueError(
"Exporting a ScriptModule is not supported. "
"Maybe try converting your ScriptModule to an ExportedProgram "
"using `TS2EPConverter(mod, args, kwargs).convert()` instead."
)
return _export_for_training(
mod,
args,
kwargs,
dynamic_shapes,
strict=strict,
preserve_module_call_signature=preserve_module_call_signature,
)
def export_for_inference(
mod: torch.nn.Module,
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
strict: bool = True,
preserve_module_call_signature: Tuple[str, ...] = (),
decomp_table: Optional[Dict["OpOverload", Optional[Callable]]] = None,
) -> ExportedProgram:
"""
:func:`export_for_inference` takes any nn.Module along with example inputs, and produces a traced graph representing
only the Tensor computation of the function in an Ahead-of-Time (AOT) fashion,
which can subsequently be executed with different inputs or serialized. The
traced graph (1) produces normalized operators in the ATen operator set
(as well as any user-specified custom operators) which is customizable via decomp_table,
(2) has eliminated all Python control flow and data structures (with certain exceptions),
and (3) records the set of shape constraints needed to show that this normalization and control-flow
elimination is sound for future inputs. This API is for convenience use as it combines :func:`export_for_training` and
:func:`run_decompositions`.
**Soundness Guarantee**
See :func:`export()` docstring for more details.
Args:
mod: We will trace the forward method of this module.
args: Example positional inputs.
kwargs: Optional example keyword inputs.
dynamic_shapes:
An optional argument where the type should either be:
1) a dict from argument names of ``f`` to their dynamic shape specifications,
2) a tuple that specifies dynamic shape specifications for each input in original order.
If you are specifying dynamism on keyword args, you will need to pass them in the order that
is defined in the original function signature.
The dynamic shape of a tensor argument can be specified as either
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
not required to include static dimension indices in this dict, but when they are,
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
recursively specified by using mappings or sequences of contained specifications.
strict: When enabled (default), the export function will trace the program through
TorchDynamo which will ensure the soundness of the resulting graph. Otherwise, the
exported program will not validate the implicit assumptions baked into the graph and
may cause behavior divergence between the original model and the exported one. This is
useful when users need to workaround bugs in the tracer, or simply want incrementally
enable safety in their models. Note that this does not affect the resulting IR spec
to be different and the model will be serialized in the same way regardless of what value
is passed here.
WARNING: This option is experimental and use this at your own risk.
decomp_table: See :func:`run_decompositions` for more details.
Returns:
An :class:`ExportedProgram` containing the traced callable.
**Acceptable input/output types**
Acceptable types of inputs (for ``args`` and ``kwargs``) and outputs include:
- Primitive types, i.e. ``torch.Tensor``, ``int``, ``float``, ``bool`` and ``str``.
- Dataclasses, but they must be registered by calling :func:`register_dataclass` first.
- (Nested) Data structures comprising of ``dict``, ``list``, ``tuple``, ``namedtuple`` and
``OrderedDict`` containing all above types.
"""
ep_for_training = export_for_training(
mod,
args,
kwargs,
dynamic_shapes=dynamic_shapes,
strict=strict,
preserve_module_call_signature=preserve_module_call_signature,
)
return ep_for_training.run_decompositions(decomp_table=decomp_table)
def export(
mod: torch.nn.Module,
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
strict: bool = True,
preserve_module_call_signature: Tuple[str, ...] = (),
) -> ExportedProgram:
"""
:func:`export` takes any nn.Module along with example inputs, and produces a traced graph representing
only the Tensor computation of the function in an Ahead-of-Time (AOT) fashion,
which can subsequently be executed with different inputs or serialized. The
traced graph (1) produces normalized operators in the functional ATen operator set
(as well as any user-specified custom operators), (2) has eliminated all Python control
flow and data structures (with certain exceptions), and (3) records the set of
shape constraints needed to show that this normalization and control-flow elimination
is sound for future inputs.
**Soundness Guarantee**
While tracing, :func:`export()` takes note of shape-related assumptions
made by the user program and the underlying PyTorch operator kernels.
The output :class:`ExportedProgram` is considered valid only when these
assumptions hold true.
Tracing makes assumptions on the shapes (not values) of input tensors.
Such assumptions must be validated at graph capture time for :func:`export`
to succeed. Specifically:
- Assumptions on static shapes of input tensors are automatically validated without additional effort.
- Assumptions on dynamic shape of input tensors require explicit specification
by using the :func:`Dim` API to construct dynamic dimensions and by associating
them with example inputs through the ``dynamic_shapes`` argument.
If any assumption can not be validated, a fatal error will be raised. When that happens,
the error message will include suggested fixes to the specification that are needed
to validate the assumptions. For example :func:`export` might suggest the
following fix to the definition of a dynamic dimension ``dim0_x``, say appearing in the
shape associated with input ``x``, that was previously defined as ``Dim("dim0_x")``::
dim = Dim("dim0_x", max=5)
This example means the generated code requires dimension 0 of input ``x`` to be less
than or equal to 5 to be valid. You can inspect the suggested fixes to dynamic dimension
definitions and then copy them verbatim into your code without needing to change the
``dynamic_shapes`` argument to your :func:`export` call.
Args:
mod: We will trace the forward method of this module.
args: Example positional inputs.
kwargs: Optional example keyword inputs.
dynamic_shapes:
An optional argument where the type should either be:
1) a dict from argument names of ``f`` to their dynamic shape specifications,
2) a tuple that specifies dynamic shape specifications for each input in original order.
If you are specifying dynamism on keyword args, you will need to pass them in the order that
is defined in the original function signature.
The dynamic shape of a tensor argument can be specified as either
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
not required to include static dimension indices in this dict, but when they are,
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
recursively specified by using mappings or sequences of contained specifications.
strict: When enabled (default), the export function will trace the program through
TorchDynamo which will ensure the soundness of the resulting graph. Otherwise, the
exported program will not validate the implicit assumptions baked into the graph and
may cause behavior divergence between the original model and the exported one. This is
useful when users need to workaround bugs in the tracer, or simply want incrementally
enable safety in their models. Note that this does not affect the resulting IR spec
to be different and the model will be serialized in the same way regardless of what value
is passed here.
WARNING: This option is experimental and use this at your own risk.
Returns:
An :class:`ExportedProgram` containing the traced callable.
**Acceptable input/output types**
Acceptable types of inputs (for ``args`` and ``kwargs``) and outputs include:
- Primitive types, i.e. ``torch.Tensor``, ``int``, ``float``, ``bool`` and ``str``.
- Dataclasses, but they must be registered by calling :func:`register_dataclass` first.
- (Nested) Data structures comprising of ``dict``, ``list``, ``tuple``, ``namedtuple`` and
``OrderedDict`` containing all above types.
"""
from ._trace import _export
if not isinstance(mod, torch.nn.Module):
raise ValueError(
f"Expected `mod` to be an instance of `torch.nn.Module`, got {type(mod)}."
)
if isinstance(mod, torch.jit.ScriptModule):
raise ValueError(
"Exporting a ScriptModule is not supported. "
"Maybe try converting your ScriptModule to an ExportedProgram "
"using `TS2EPConverter(mod, args, kwargs).convert()` instead."
)
return _export(
mod,
args,
kwargs,
dynamic_shapes,
strict=strict,
preserve_module_call_signature=preserve_module_call_signature,
pre_dispatch=True,
)
def save(
ep: ExportedProgram,
f: Union[str, os.PathLike, io.BytesIO],
*,
extra_files: Optional[Dict[str, Any]] = None,
opset_version: Optional[Dict[str, int]] = None,
) -> None:
"""
.. warning::
Under active development, saved files may not be usable in newer versions
of PyTorch.
Saves an :class:`ExportedProgram` to a file-like object. It can then be
loaded using the Python API :func:`torch.export.load <torch.export.load>`.
Args:
ep (ExportedProgram): The exported program to save.
f (Union[str, os.PathLike, io.BytesIO): A file-like object (has to
implement write and flush) or a string containing a file name.
extra_files (Optional[Dict[str, Any]]): Map from filename to contents
which will be stored as part of f.
opset_version (Optional[Dict[str, int]]): A map of opset names
to the version of this opset
Example::
import torch
import io
class MyModule(torch.nn.Module):
def forward(self, x):
return x + 10
ep = torch.export.export(MyModule(), (torch.randn(5),))
# Save to file
torch.export.save(ep, 'exported_program.pt2')
# Save to io.BytesIO buffer
buffer = io.BytesIO()
torch.export.save(ep, buffer)
# Save with extra files
extra_files = {'foo.txt': b'bar'.decode('utf-8')}
torch.export.save(ep, 'exported_program.pt2', extra_files=extra_files)
"""
if not isinstance(ep, ExportedProgram):
raise TypeError(
f"The 'ep' parameter must be an instance of 'ExportedProgram', got '{type(ep).__name__}' instead."
)
from torch._export.serde.schema import SCHEMA_VERSION
from torch._export.serde.serialize import serialize, SerializedArtifact
artifact: SerializedArtifact = serialize(ep, opset_version)
if isinstance(f, (str, os.PathLike)):
f = os.fspath(f)
with zipfile.ZipFile(f, "w") as zipf:
# Save every field in the SerializedArtifact to a file.
assert isinstance(artifact.exported_program, bytes)
zipf.writestr("serialized_exported_program.json", artifact.exported_program)
zipf.writestr("serialized_state_dict.pt", artifact.state_dict)
zipf.writestr("serialized_constants.pt", artifact.constants)
zipf.writestr("serialized_example_inputs.pt", artifact.example_inputs)
zipf.writestr("version", ".".join(map(str, SCHEMA_VERSION)))
# Add extra files if provided
if extra_files:
for extra_file_name, content in extra_files.items():
encoded_content = content.encode("utf-8")
zipf.writestr(f"extra_files/{extra_file_name}", encoded_content)
def load(
f: Union[str, os.PathLike, io.BytesIO],
*,
extra_files: Optional[Dict[str, Any]] = None,
expected_opset_version: Optional[Dict[str, int]] = None,
) -> ExportedProgram:
"""
.. warning::
Under active development, saved files may not be usable in newer versions
of PyTorch.
Loads an :class:`ExportedProgram` previously saved with
:func:`torch.export.save <torch.export.save>`.
Args:
ep (ExportedProgram): The exported program to save.
f (Union[str, os.PathLike, io.BytesIO): A file-like object (has to
implement write and flush) or a string containing a file name.
extra_files (Optional[Dict[str, Any]]): The extra filenames given in
this map would be loaded and their content would be stored in the
provided map.
expected_opset_version (Optional[Dict[str, int]]): A map of opset names
to expected opset versions
Returns:
An :class:`ExportedProgram` object
Example::
import torch
import io
# Load ExportedProgram from file
ep = torch.export.load('exported_program.pt2')
# Load ExportedProgram from io.BytesIO object
with open('exported_program.pt2', 'rb') as f:
buffer = io.BytesIO(f.read())
buffer.seek(0)
ep = torch.export.load(buffer)
# Load with extra files.
extra_files = {'foo.txt': ''} # values will be replaced with data
ep = torch.export.load('exported_program.pt2', extra_files=extra_files)
print(extra_files['foo.txt'])
print(ep(torch.randn(5)))
"""
if isinstance(f, (str, os.PathLike)):
f = os.fspath(f)
extra_files = extra_files or {}
with zipfile.ZipFile(f, "r") as zipf:
# Check the version
version = zipf.read("version").decode().split(".")
from torch._export.serde.schema import SCHEMA_VERSION
assert len(version) == len(SCHEMA_VERSION)
if version[0] != str(SCHEMA_VERSION[0]):
raise RuntimeError(
f"Serialized version {version} does not match our current "
f"schema version {SCHEMA_VERSION}."
)
from torch._export.serde.serialize import deserialize, SerializedArtifact
# Load serialized_ep and serialized_state_dict from the zip file
serialized_exported_program: Optional[bytes] = None
serialized_state_dict: Optional[bytes] = None
serialized_constants: Optional[bytes] = None
serialized_example_inputs: Optional[bytes] = None
for file_info in zipf.infolist():
file_content = zipf.read(file_info.filename)
if file_info.filename == "serialized_exported_program.json":
serialized_exported_program = file_content
elif file_info.filename == "serialized_state_dict.json":
warnings.warn("This version of file is deprecated")
serialized_state_dict = file_content
elif file_info.filename == "serialized_constants.json":
warnings.warn("This version of file is deprecated")
serialized_constants = file_content
elif file_info.filename == "serialized_state_dict.pt":
serialized_state_dict = file_content
elif file_info.filename == "serialized_constants.pt":
serialized_constants = file_content
elif file_info.filename == "serialized_example_inputs.pt":
serialized_example_inputs = file_content
elif file_info.filename.startswith("extra_files"):
filename = file_info.filename.split("/", 1)[1]
extra_files[filename] = file_content.decode("utf-8")
assert serialized_exported_program is not None
assert serialized_state_dict is not None
assert serialized_constants is not None
assert serialized_example_inputs is not None
artifact: SerializedArtifact = SerializedArtifact(
serialized_exported_program,
serialized_state_dict,
serialized_constants,
serialized_example_inputs,
)
# Deserialize ExportedProgram
ep = deserialize(artifact, expected_opset_version)
return ep
def register_dataclass(
cls: Type[Any],
*,
serialized_type_name: Optional[str] = None,
) -> None:
"""
Registers a dataclass as a valid input/output type for :func:`torch.export.export`.
Args:
cls: the dataclass type to register
serialized_type_name: The serialized name for the dataclass. This is
required if you want to serialize the pytree TreeSpec containing this
dataclass.
Example::
import torch
from dataclasses import dataclass
@dataclass
class InputDataClass:
feature: torch.Tensor
bias: int
@dataclass
class OutputDataClass:
res: torch.Tensor
torch.export.register_dataclass(InputDataClass)
torch.export.register_dataclass(OutputDataClass)
class Mod(torch.nn.Module):
def forward(self, x: InputDataClass) -> OutputDataClass:
res = x.feature + x.bias
return OutputDataClass(res=res)
ep = torch.export.export(Mod(), (InputDataClass(torch.ones(2, 2), 1), ))
print(ep)
"""
from torch._export.utils import register_dataclass_as_pytree_node
return register_dataclass_as_pytree_node(
cls, serialized_type_name=serialized_type_name
)
|