| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 
 | Source: pytorch
Section: science
Homepage: https://pytorch.org/
Priority: optional
Standards-Version: 4.7.0
Vcs-Git: https://salsa.debian.org/deeplearning-team/pytorch.git
Vcs-Browser: https://salsa.debian.org/deeplearning-team/pytorch
Maintainer: Debian Deep Learning Team <debian-ai@lists.debian.org>
Uploaders: Mo Zhou <lumin@debian.org>, Shengqi Chen <harry@debian.org>
Rules-Requires-Root: no
Build-Depends: cmake,
               debhelper-compat (= 13),
               dh-exec,
               dh-python,
               googletest,
               glslc,
               libblas-dev,
               libbenchmark-dev,
               libcpuinfo-dev (>= 0.0~git20230113.6481e8b~),
               libcpp-httplib-dev,
               libdnnl-dev (>= 3.6.0~) [amd64 arm64 ppc64el s390x],
               libeigen3-dev,
               libfmt-dev,
               libfp16-dev (>= 0.0~git20200514.4dfe081~),
               libflatbuffers-dev,
               flatbuffers-compiler-dev,
               libfxdiv-dev (>= 0.0~git20200417.b408327~),
               libgloo-dev (>= 0.0~git20231202.5354032-5) [amd64 arm64 ppc64el s390x riscv64],
               libuv1-dev,
               mpi-default-dev,
               libideep-dev (>= 0.0~git20230825.6f4d653~) [amd64 arm64 ppc64el s390x],
               liblapack-dev,
               llvm-19,
               llvm-19-dev,
               libnuma-dev,
               libonnx-dev (>= 1.14.1~),
               libprotobuf-dev,
               libprotoc-dev,
               libpsimd-dev (>= 0.0~git20200517.072586a~),
               libpthreadpool-dev (>= 0.0~git20210507.1787867~),
               libsleef-dev (>= 3.6.1-1~),
               libsnappy-dev,
               libtensorpipe-dev (>= 0.0~git20220513.bb1473a~),
               libzstd-dev,
               libvulkan-dev,
               libvulkan-memory-allocator-dev,
               libxnnpack-dev (>= 0.0~git20241108.4ea82e5~) [amd64 arm64 riscv64],
               nlohmann-json3-dev,
               ninja-build,
               protobuf-compiler,
               pybind11-dev,
               python3,
               python3-cffi,
               python3-dev,
               python3-expecttest,
               python3-numpy,
               python3-numpy-dev,
               python3-onnx,
               python3-pybind11,
               python3-setuptools,
               python3-yaml,
               patchelf,
Package: python3-torch
Section: python
Architecture: amd64 arm64 ppc64el s390x riscv64
Depends: libtorch2.6 (= ${binary:Version}),
         ${misc:Depends},
         ${python3:Depends},
         ${shlibs:Depends},
         libtorch-test (= ${binary:Version}),
# PyTorch's JIT (C++ Extension) functionality needs development files/tools.
Recommends: libtorch-dev (= ${binary:Version}),
            build-essential,
            ninja-build,
            pybind11-dev,
Suggests: python3-hypothesis, python3-pytest
Provides: ${python3:Provides}, python3-torch-api-2.6
Conflicts: python3-torch-cuda
Replaces: python3-torch-cuda
Description: Tensors and Dynamic neural networks in Python (Python Interface)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch (Python interface).
Package: libtorch-dev
Section: libdevel
Architecture: amd64 arm64 ppc64el s390x riscv64
Depends: libtorch2.6 (= ${binary:Version}),
         python3-dev,
         libprotobuf-dev,
         ${misc:Depends}
Conflicts: libtorch-cuda-dev
Replaces: libtorch-cuda-dev
Description: Tensors and Dynamic neural networks in Python (Development Files)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch (Development files).
Package: libtorch2.6
Section: libs
Architecture: amd64 arm64 ppc64el s390x riscv64
Multi-Arch: same
Depends: ${misc:Depends}, ${shlibs:Depends},
         libgloo0 (>= 0.0~git20231202.5354032-5),
Recommends: libopenblas0 | libblis3 | libatlas3-base | libmkl-rt | libblas3,
Conflicts: libtorch1.13, libtorch-cuda-1.13,
           libtorch2.0, libtorch-cuda-2.0,
           libtorch2.1, libtorch-cuda-2.1,
           libtorch2.4, libtorch-cuda-2.4,
           libtorch2.5, libtorch-cuda-2.5,
           libtorch-cuda-2.6,
Replaces: libtorch1.13, libtorch-cuda-1.13,
          libtorch2.0, libtorch-cuda-2.0,
          libtorch2.1, libtorch-cuda-2.1,
          libtorch2.4, libtorch-cuda-2.4,
          libtorch2.5, libtorch-cuda-2.5,
          libtorch-cuda-2.6,
Description: Tensors and Dynamic neural networks in Python (Shared Objects)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch (Shared Objects).
Package: libtorch-test
Section: libs
Architecture: amd64 arm64 ppc64el s390x riscv64
Depends: libtorch2.6 (= ${binary:Version}), ${misc:Depends}, ${shlibs:Depends},
Conflicts: libtorch-cuda-test
Replaces: libtorch-cuda-test
Description: Tensors and Dynamic neural networks in Python (Test Binaries)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch (Test Binaries).
 |