1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
|
#pragma once
#include <ATen/Context.h>
#include <ATen/NativeFunctions.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/stack.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
namespace torch::jit {
inline void noop(Stack& n) {}
int64_t normalizeIndex(int64_t idx, int64_t list_size);
// reference function THPVariable_to in python_variable_methods.cpp
[[maybe_unused]] static at::Tensor to_dispatch(
at::Tensor self,
std::optional<at::Device> device,
std::optional<at::ScalarType> scalarType,
bool non_blocking,
bool copy) {
if (device && device->is_cuda()) {
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
}
if (!device && !scalarType && !copy) {
return self;
} else if (!device) {
return self.to(*scalarType, non_blocking, copy);
} else if (!scalarType) {
return self.to(*device, non_blocking, copy);
} else {
return self.to(*device, *scalarType, non_blocking, copy);
}
}
// Convert the tensor pointed to by \p data to a nested list. \p dim is the
// number of dimensions in the tensor and \p cur_dim is the dimension being
// processed by the current invocation. \p ty is the expected output IR type of
// the operation. \p is the scalar type of \p data. \p sizes and \p strides are
// the sizes and strides of the tensor operand and \p element_size is the size
// in bytes of one tensor element.
IValue tensorToListRecursive(
char* data,
int64_t cur_dim,
int64_t num_tensor_dims,
at::TypePtr ty,
at::ScalarType scalar_ty,
at::IntArrayRef sizes,
at::IntArrayRef strides,
size_t element_size);
} // namespace torch::jit
|