1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
|
#pragma once
#include <ATen/Context.h>
#include <c10/core/DeviceType.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/mobile/register_ops_common_utils.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <torch/csrc/jit/runtime/logging.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/print_handler.h>
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Parallel.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/core/Dict.h>
#include <ATen/core/Generator.h>
#include <ATen/core/ivalue.h>
#include <c10/core/Device.h>
#include <c10/core/thread_pool.h>
#include <c10/util/SmallVector.h>
#include <c10/util/irange.h>
namespace torch::jit {
constexpr inline c10::AliasAnalysisKind aliasAnalysisFromSchema() {
return c10::AliasAnalysisKind::FROM_SCHEMA;
}
constexpr inline c10::AliasAnalysisKind aliasAnalysisConservative() {
return c10::AliasAnalysisKind::CONSERVATIVE;
}
constexpr inline c10::AliasAnalysisKind aliasAnalysisSpecialCase() {
return c10::AliasAnalysisKind::INTERNAL_SPECIAL_CASE;
}
template <class T>
c10::List<T> make_result_list(const TypePtr& elemType) {
return c10::List<T>();
}
template <>
c10::impl::GenericList make_result_list<IValue>(const TypePtr& elemType);
// As described in https://docs.python.org/3/library/functions.html#round
// When a number is exactly halfway between two integers, python builtin round
// function will round to even number. We use round(x/2)*2 to handle the
// special halfway case. For positive 'x', round(x/2)*2 =
// round((x_e + x_r)/2)*2 = x_e + round(x_r/2)*2, where x_e is an even integer,
// x_r is either 0.5 of 1.5, round(x_r/2)*2 results a 0 or 2, so the final
// result will always be a even number. Due to symmetricity, it also applies to
// negative cases.
inline double round_to_even(double a) {
return a - std::floor(a) == 0.5 ? (std::round(a * 0.5) * 2.0) : std::round(a);
}
// using the rules from python_arg_parser FunctionParameter::check
// tensor cannot have grad set, tensor must be 0 dim,
// and if the dest is an int the source must be integral type
void checkImplicitTensorToNum(const at::Tensor& t, bool toInt);
[[maybe_unused]] static int64_t floordiv(int64_t a, int64_t b) {
if (b == 0) {
throw std::runtime_error("division by 0");
}
if ((a > 0) == (b > 0)) {
// simple case, both have same sign
return a / b;
} else {
// in python division rounds down, it doesn't not truncate like in c++
auto r = lldiv(a, b);
return (r.rem) ? r.quot - 1 : r.quot;
}
}
TORCH_API void checkDoubleInRange(double a);
[[maybe_unused]] static int64_t floor(double a) {
checkDoubleInRange(a);
return std::floor(a);
}
[[maybe_unused]] static int64_t ceil(double a) {
checkDoubleInRange(a);
return std::ceil(a);
}
[[maybe_unused]] static int64_t gcd(int64_t a, int64_t b) {
while (b != 0) {
int64_t r = a % b;
a = b;
b = r;
}
// in python gcd returns non-negative values
return std::abs(a);
}
int64_t partProduct(int n, int m);
void loop(int n, int64_t& p, int64_t& r);
int nminussumofbits(int v);
int64_t factorial(int n);
static const double degToRad = std::acos(-1.0) / 180.0;
static const double radToDeg = 180.0 / std::acos(-1.0);
double degrees(double x);
double radians(double x);
// Convert an python index (which may be negative) into an index usable for a
// C++ container
// Equivalent to list.at(idx)
template <typename T>
decltype(auto) getItem(const c10::List<T>& list, int64_t idx) {
const int64_t list_size = list.size();
const int64_t normalized_idx = normalizeIndex(idx, list_size);
if (normalized_idx < 0 || normalized_idx >= list_size) {
throw std::out_of_range("list index out of range");
}
return list.get(normalized_idx);
}
template <typename T>
void setItem(const c10::List<T>& list, int64_t idx, T&& value) {
const int64_t list_size = list.size();
const int64_t normalized_idx = normalizeIndex(idx, list_size);
if (normalized_idx < 0 || normalized_idx >= list_size) {
throw std::out_of_range("list index out of range");
}
list.set(normalized_idx, std::forward<T>(value));
}
void listAppend(Stack& stack);
void listReverse(Stack& stack);
template <typename T>
void minList(Stack& stack) {
c10::List<T> a = pop(stack).to<c10::List<T>>();
c10::List<T> b = pop(stack).to<c10::List<T>>();
size_t min_size = std::min(a.size(), b.size());
for (const auto i : c10::irange(min_size)) {
if (a[i] == b[i]) {
continue;
}
push(stack, a[i] < b[i] ? a : b);
return;
}
push(stack, b.size() < a.size() ? b : a);
}
template <typename T>
void maxList(Stack& stack) {
c10::List<T> a = pop(stack).to<c10::List<T>>();
c10::List<T> b = pop(stack).to<c10::List<T>>();
size_t min_size = std::min(a.size(), b.size());
for (const auto i : c10::irange(min_size)) {
if (a[i] == b[i]) {
continue;
}
push(stack, a[i] > b[i] ? a : b);
return;
}
push(stack, b.size() > a.size() ? b : a);
}
void listPopImpl(Stack& stack, const char* empty_message);
void listPop(Stack& stack);
void listClear(Stack& stack);
void listDelete(Stack& stack);
void listInsert(Stack& stack);
template <typename T>
void listRemove(Stack& stack) {
T elem = pop(stack).to<T>();
c10::List<T> list = pop(stack).to<c10::List<T>>();
auto pos = std::find(list.begin(), list.end(), elem);
if (pos != list.end()) {
list.erase(pos);
} else {
TORCH_CHECK(false, "list.remove(x): x not in list");
}
}
template <typename T>
void listMin(Stack& stack) {
c10::List<T> list = pop(stack).to<c10::List<T>>();
size_t list_size = list.size();
if (list_size == 0) {
throw std::runtime_error("min() arg is an empty sequence");
}
T min_elem = list[0];
for (const auto i : c10::irange(1, list_size)) {
T elem = list[i];
min_elem = elem < min_elem ? elem : min_elem;
}
stack.push_back(min_elem);
}
template <typename T>
void listMax(Stack& stack) {
c10::List<T> list = pop(stack).to<c10::List<T>>();
size_t list_size = list.size();
if (list_size == 0) {
throw std::runtime_error("max() arg is an empty sequence");
}
T max_elem = list[0];
for (const auto i : c10::irange(1, list_size)) {
T elem = list[i];
max_elem = elem > max_elem ? elem : max_elem;
}
stack.push_back(max_elem);
}
template <>
void listRemove<at::Tensor>(Stack& stack);
template <typename T>
void listIndex(Stack& stack) {
T elem = pop(stack).to<T>();
c10::List<T> list = pop(stack).to<c10::List<T>>();
auto pos = std::find(list.begin(), list.end(), elem);
if (pos != list.end()) {
push(stack, static_cast<int64_t>(std::distance(list.begin(), pos)));
} else {
TORCH_CHECK(false, "'", elem, "' is not in list");
}
}
template <>
void listIndex<at::Tensor>(Stack& stack);
template <typename T>
void listCount(Stack& stack) {
T elem = pop(stack).to<T>();
c10::List<T> list = pop(stack).to<c10::List<T>>();
const int64_t count = std::count(list.begin(), list.end(), elem);
push(stack, count);
}
template <>
void listCount<at::Tensor>(Stack& stack);
void listExtend(Stack& stack);
void listCopy(Stack& stack);
void listSelect(Stack& stack);
void listLen(Stack& stack);
template <typename T>
void listEq(Stack& stack) {
c10::List<T> b = pop(stack).to<c10::List<T>>();
c10::List<T> a = pop(stack).to<c10::List<T>>();
push(stack, a == b);
}
template <typename T>
void listNe(Stack& stack) {
c10::List<T> b = pop(stack).to<c10::List<T>>();
c10::List<T> a = pop(stack).to<c10::List<T>>();
push(stack, a != b);
}
inline bool tensor_list_equal(
const c10::List<at::Tensor>& a,
const c10::List<at::Tensor>& b) {
if (a.size() != b.size()) {
return false;
}
for (const auto i : c10::irange(a.size())) {
const at::Tensor& a_element = a[i];
const at::Tensor& b_element = b[i];
// This preserves Python's semantics, which uses eq() to compare two
// elements, then passes the result to bool().
// see: https://docs.python.org/3.4/reference/datamodel.html#object.__ge__
const auto cmp_result = a_element.eq(b_element);
if (!at::native::is_nonzero(cmp_result)) {
return false;
}
}
return true;
}
// Specialization for at::Tensor, since it doesn't define operator==
template <>
void listEq<at::Tensor>(Stack& stack);
// Specialization for at::Tensor, since it doesn't define operator==
template <>
void listNe<at::Tensor>(Stack& stack);
void listList(Stack& stack);
template <typename T>
void listContains(Stack& stack) {
auto key = pop(stack).to<T>();
auto list = pop(stack).to<c10::List<T>>();
// NOLINTNEXTLINE(performance-implicit-conversion-in-loop)
for (const T& item : list) {
if (item == key) {
push(stack, true);
return;
}
}
push(stack, false);
}
void listAdd(Stack& stack);
void listInplaceAdd(Stack& stack);
void listMulIntLeftInPlace(Stack& stack);
void listMulIntLeft(Stack& stack);
void listMulIntRight(Stack& stack);
void listSlice(Stack& stack);
template <typename T>
void listSort(Stack& stack) {
bool reverse = pop(stack).toBool();
c10::List<T> list = pop(stack).to<c10::List<T>>();
std::sort(list.begin(), list.end(), [reverse](const T& a, const T& b) {
// FBCode errors without this check - "strict weak ordering"
// TODO: remove when possible, since it just slows down
// sorting and doesn't do anything useful
if (a == b) {
return false;
}
return (a < b) != reverse;
});
}
// Specialization for at::Tensor
template <>
void listSort<at::Tensor>(Stack& stack);
template <typename T>
void listCopyAndSort(Stack& stack) {
c10::List<T> list = pop(stack).to<c10::List<T>>();
auto list_copied = list.copy();
std::sort(list_copied.begin(), list_copied.end(), [](const T& a, const T& b) {
// "strict weak ordering" issue - see other sort
if (a == b) {
return false;
}
return a < b;
});
push(stack, list_copied);
}
// Specialization for at::Tensor
template <>
void listCopyAndSort<at::Tensor>(Stack& stack);
void listSetItem(Stack& stack);
struct OperatorGeneratorArgs {
const char* schema_str;
bool isOperationCreator;
union {
void (*operation)(Stack&);
OperationCreator operationCreator;
};
AliasAnalysisKind aliasAnalysis;
explicit constexpr OperatorGeneratorArgs(
torch::detail::SelectiveStr<true> schema_str,
void (*op)(Stack&),
AliasAnalysisKind aa)
: schema_str(schema_str),
isOperationCreator(false),
operation(op),
aliasAnalysis(aa) {}
explicit constexpr OperatorGeneratorArgs(
torch::detail::SelectiveStr<true> schema_str,
OperationCreator opCreator,
AliasAnalysisKind aa)
: schema_str(schema_str),
isOperationCreator(true),
operationCreator(opCreator),
aliasAnalysis(aa) {}
template <typename... Args>
explicit constexpr OperatorGeneratorArgs(
torch::detail::SelectiveStr<false>,
Args...)
: schema_str(nullptr),
isOperationCreator(false),
operation(nullptr),
aliasAnalysis(AliasAnalysisKind::INTERNAL_SPECIAL_CASE) {}
};
#define DEFINE_GENERIC_BINARY_OP( \
aten_op, op, int_float_result, complex_result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op \
".int_int(int a, int b) -> " #int_float_result), \
[](Stack& stack) { \
int64_t a, b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op \
".float_float(float a, float b) -> " #int_float_result), \
[](Stack& stack) { \
double a, b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op \
".complex_complex(complex a, complex b) -> " #complex_result), \
[](Stack& stack) { \
c10::complex<double> a, b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
// define implementations for primitive number ops
#define DEFINE_GENERIC_OP(aten_op, int_op, float_op, int_result, float_result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".int(int a, int b) -> " #int_result), \
[](Stack& stack) { \
int64_t a, b; \
pop(stack, a, b); \
push(stack, int_op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op ".float(float a, float b) -> " #float_result), \
[](Stack& stack) { \
double a, b; \
pop(stack, a, b); \
push(stack, float_op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_INT_FLOAT_OP(aten_op, op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op \
".int_float(int a, float b) -> " #result), \
[](Stack& stack) { \
int64_t a; \
double b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op \
".float_int(float a, int b) -> " #result), \
[](Stack& stack) { \
double a; \
int64_t b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_INT_OP(aten_op, op) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".int(int a, int b) -> int"), \
[](Stack& stack) { \
int64_t a, b; \
pop(stack, a, b); \
push(stack, op); /* NOLINT(hicpp-signed-bitwise) */ \
}, \
aliasAnalysisFromSchema())
#define DEFINE_STR_CMP_OP(aten_op, op) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".str(str a, str b) -> bool"), \
[](Stack& stack) { \
auto b = pop(stack).toStringRef(); \
auto a = pop(stack).toStringRef(); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
// define a primitive op over Scalar operands.
// it's necessary to register this overload following
// int/float variations to avoid trapping Scalar args
// in unintended implicit conversions
#define DEFINE_SCALAR_BINARY_OP_AVOID_COLLISION_GENERIC( \
aten_op, int_op, float_op, result, string_val) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op string_val \
"(Scalar a, Scalar b) -> " #result), \
[](Stack& stack) { \
IValue x, y; \
pop(stack, x, y); \
if (x.isDouble()) { \
if (y.isDouble()) { \
double a = x.toDouble(); \
double b = y.toDouble(); \
push(stack, float_op); \
} else { \
double a = x.toDouble(); \
int64_t b = y.toInt(); \
push(stack, float_op); \
} \
} else { \
if (y.isDouble()) { \
int64_t a = x.toInt(); \
double b = y.toDouble(); \
push(stack, float_op); \
} else { \
int64_t a = x.toInt(); \
int64_t b = y.toInt(); \
push(stack, int_op); \
} \
} \
}, \
aliasAnalysisFromSchema())
#define DEFINE_SCALAR_BINARY_OP(aten_op, int_op, float_op, result) \
DEFINE_SCALAR_BINARY_OP_AVOID_COLLISION_GENERIC( \
aten_op, int_op, float_op, result, "")
#define DEFINE_SCALAR_BINARY_OP_AVOID_COLLISION( \
aten_op, int_op, float_op, result) \
DEFINE_SCALAR_BINARY_OP_AVOID_COLLISION_GENERIC( \
aten_op, int_op, float_op, result, ".Scalar_Scalar")
#define DEFINE_BINARY_OP(aten_op, op) \
DEFINE_GENERIC_OP(aten_op, op, op, int, float), \
DEFINE_INT_FLOAT_OP(aten_op, op, float), \
DEFINE_SCALAR_BINARY_OP(aten_op, op, op, Scalar)
#define DEFINE_BINARY_FLOAT_OP(aten_op, op) \
DEFINE_GENERIC_OP(aten_op, op, op, float, float), \
DEFINE_INT_FLOAT_OP(aten_op, op, float), \
DEFINE_SCALAR_BINARY_OP(aten_op, op, op, float)
#define DEFINE_COMPARISON_OP(aten_op, op) \
DEFINE_GENERIC_OP(aten_op, op, op, bool, bool), \
DEFINE_INT_FLOAT_OP(aten_op, op, bool), \
DEFINE_SCALAR_BINARY_OP(aten_op, op, op, bool), \
DEFINE_STR_CMP_OP(aten_op, op)
#define DEFINE_UNARY_INT_OP(aten_op, op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".int(int a) -> " #result), \
[](Stack& stack) { \
int64_t a; \
pop(stack, a); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_UNARY_FLOAT_OP(aten_op, op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".float(float a) -> " #result), \
[](Stack& stack) { \
double a; \
pop(stack, a); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_UNARY_OP(aten_op, op, int_result, float_result) \
DEFINE_UNARY_INT_OP(aten_op, op, int_result), \
DEFINE_UNARY_FLOAT_OP(aten_op, op, float_result), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".Scalar(Scalar a) -> Scalar"), \
[](Stack& stack) { \
IValue x; \
pop(stack, x); \
if (x.isDouble()) { \
double a = x.toDouble(); \
push(stack, static_cast<float_result>(op)); \
} else { \
int64_t a = x.toInt(); \
push(stack, static_cast<int_result>(op)); \
} \
}, \
aliasAnalysisFromSchema())
#define DEFINE_BOOL_OP(aten_op, op) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".bool(bool a, bool b) -> bool"), \
[](Stack& stack) { \
bool a, b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_STRING_OP(op_name, string_op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#op_name ".str(str a, str b) ->" #result), \
[](Stack& stack) { \
auto b = pop(stack).toStringRef(); \
auto a = pop(stack).toStringRef(); \
push(stack, string_op); \
}, \
aliasAnalysisFromSchema())
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#define DEFINE_UNARY_COMPLEX_OP(aten_op, op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".complex(complex a) -> " #result), \
[](Stack& stack) { \
c10::complex<double> a; \
pop(stack, a); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
// Some complex unary ops (like abs, angle) return real valued output, but most
// other unary ops return complex valued output. So, this macro is used in the
// former case where we can explicitly pass complex_result_cast argument, which
// is set to c10::complex<float> in the macro `DEFINE_UNARY_OP_WITH_COMPLEX`
// defined below.
#define DEFINE_UNARY_OP_WITH_COMPLEX_CAST( \
aten_op, \
op, \
int_result, \
float_result, \
complex_result, \
complex_result_cast) \
DEFINE_UNARY_INT_OP(aten_op, op, int_result), \
DEFINE_UNARY_FLOAT_OP(aten_op, op, float_result), \
DEFINE_UNARY_COMPLEX_OP(aten_op, op, complex_result), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".Scalar(Scalar a) -> Scalar"), \
[](Stack& stack) { \
IValue x; \
pop(stack, x); \
if (x.isDouble()) { \
double a = x.toDouble(); \
push(stack, static_cast<float_result>(op)); \
} else if (x.isComplexDouble()) { \
c10::complex<double> a = x.toComplexDouble(); \
push(stack, static_cast<complex_result_cast>(op)); \
} else { \
int64_t a = x.toInt(); \
push(stack, static_cast<int_result>(op)); \
} \
}, \
aliasAnalysisFromSchema())
#define DEFINE_UNARY_OP_WITH_COMPLEX(aten_op, op, int_result, float_result) \
DEFINE_UNARY_OP_WITH_COMPLEX_CAST( \
aten_op, op, int_result, float_result, complex, c10::complex<double>)
#define DEFINE_GENERIC_OP_WITH_COMPLEX( \
aten_op, \
int_op, \
float_op, \
complex_op, \
int_result, \
float_result, \
complex_result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op ".int(int a, int b) -> " #int_result), \
[](Stack& stack) { \
int64_t a, b; \
pop(stack, a, b); \
push(stack, int_op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op ".complex(complex a, complex b) -> " #complex_result), \
[](Stack& stack) { \
c10::complex<double> a, b; \
pop(stack, a, b); \
push(stack, complex_op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op ".float(float a, float b) -> " #float_result), \
[](Stack& stack) { \
double a, b; \
pop(stack, a, b); \
push(stack, float_op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_INT_COMPLEX_OP(aten_op, op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op \
".int_complex(int a, complex b) -> " #result), \
[](Stack& stack) { \
int64_t a; \
c10::complex<double> b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op ".complex_int(complex a, int b) -> " #result), \
[](Stack& stack) { \
c10::complex<double> a; \
int64_t b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_FLOAT_COMPLEX_OP(aten_op, op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op ".float_complex(float a, complex b) -> " #result), \
[](Stack& stack) { \
double a; \
c10::complex<double> b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema()), \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA( \
#aten_op ".complex_float(complex a, float b) -> " #result), \
[](Stack& stack) { \
c10::complex<double> a; \
double b; \
pop(stack, a, b); \
push(stack, op); \
}, \
aliasAnalysisFromSchema())
#define DEFINE_SCALAR_BINARY_OP_WITH_COMPLEX_AVOID_COLLISION_GENERIC( \
aten_op, int_op, float_op, complex_op, result, string_val) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op string_val \
"(Scalar a, Scalar b) -> " #result), \
[](Stack& stack) { \
IValue x, y; \
pop(stack, x, y); \
if (x.isComplexDouble()) { \
c10::complex<double> a = x.toComplexDouble(); \
if (y.isComplexDouble()) { \
c10::complex<double> b = y.toComplexDouble(); \
push(stack, complex_op); \
} else if (y.isDouble()) { \
double b = y.toDouble(); \
push(stack, complex_op); \
} else { \
int64_t b = y.toInt(); \
push(stack, complex_op); \
} \
} else if (x.isDouble()) { \
double a = x.toDouble(); \
if (y.isComplexDouble()) { \
c10::complex<double> b = y.toComplexDouble(); \
push(stack, complex_op); \
} else if (y.isDouble()) { \
double b = y.toDouble(); \
push(stack, float_op); \
} else { \
int64_t b = y.toInt(); \
push(stack, float_op); \
} \
} else { \
int64_t a = x.toInt(); \
if (y.isComplexDouble()) { \
c10::complex<double> b = y.toComplexDouble(); \
push(stack, complex_op); \
} else if (y.isDouble()) { \
double b = y.toDouble(); \
push(stack, float_op); \
} else { \
int64_t b = y.toInt(); \
push(stack, int_op); \
} \
} \
}, \
aliasAnalysisFromSchema())
#define DEFINE_SCALAR_BINARY_OP_WITH_COMPLEX_WITHOUT_INT_COMPLEX_PAIR( \
aten_op, int_op, float_op, complex_op, result) \
OperatorGeneratorArgs( \
TORCH_SELECTIVE_SCHEMA(#aten_op "(Scalar a, Scalar b) -> " #result), \
[](Stack& stack) { \
IValue x, y; \
pop(stack, x, y); \
if (x.isComplexDouble()) { \
c10::complex<double> a = x.toComplexDouble(); \
if (y.isComplexDouble()) { \
c10::complex<double> b = y.toComplexDouble(); \
push(stack, complex_op); \
} else if (y.isDouble()) { \
double b = y.toDouble(); \
push(stack, complex_op); \
} \
} else if (x.isDouble()) { \
double a = x.toDouble(); \
if (y.isComplexDouble()) { \
c10::complex<double> b = y.toComplexDouble(); \
push(stack, complex_op); \
} else if (y.isDouble()) { \
double b = y.toDouble(); \
push(stack, float_op); \
} else { \
int64_t b = y.toInt(); \
push(stack, float_op); \
} \
} else { \
int64_t a = x.toInt(); \
if (y.isDouble()) { \
double b = y.toDouble(); \
push(stack, float_op); \
} else if (y.isInt()) { \
int64_t b = y.toInt(); \
push(stack, int_op); \
} \
} \
}, \
aliasAnalysisFromSchema())
#define DEFINE_SCALAR_BINARY_OP_WITH_COMPLEX( \
aten_op, int_op, float_op, complex_op, result) \
DEFINE_SCALAR_BINARY_OP_WITH_COMPLEX_AVOID_COLLISION_GENERIC( \
aten_op, int_op, float_op, complex_op, result, "")
#define DEFINE_BINARY_OP_WITH_COMPLEX(aten_op, op) \
DEFINE_GENERIC_OP_WITH_COMPLEX(aten_op, op, op, op, int, float, complex), \
DEFINE_INT_COMPLEX_OP(aten_op, op, complex), \
DEFINE_FLOAT_COMPLEX_OP(aten_op, op, complex), \
DEFINE_INT_FLOAT_OP(aten_op, op, float), \
DEFINE_SCALAR_BINARY_OP_WITH_COMPLEX(aten_op, op, op, op, Scalar)
#define DEFINE_COMPARISON_OP_WITH_COMPLEX(aten_op, op) \
DEFINE_GENERIC_OP_WITH_COMPLEX(aten_op, op, op, op, bool, bool, bool), \
DEFINE_INT_FLOAT_OP(aten_op, op, bool), \
DEFINE_FLOAT_COMPLEX_OP(aten_op, op, bool), \
DEFINE_SCALAR_BINARY_OP_WITH_COMPLEX_WITHOUT_INT_COMPLEX_PAIR( \
aten_op, op, op, op, bool), \
DEFINE_STR_CMP_OP(aten_op, op)
TORCH_API at::Generator make_generator_for_device(
c10::Device device,
std::optional<int64_t> seed = std::nullopt);
} // namespace torch::jit
|