1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
#!/usr/bin/env python3
"""
Benchmark script for PyTorch DataLoader with different worker methods.
This script measures:
1. Dataloader initialization time
2. Dataloading speed (time per batch)
3. CPU memory utilization
Usage:
python dataloader_benchmark.py --data_path /path/to/dataset --batch_size 32 --num_workers 4
"""
import argparse
import copy
import gc
import time
import psutil
import torchvision
import torchvision.transforms as transforms
from torchvision.models import resnet18
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import ConcatDataset
def get_memory_usage():
"""
Get current memory usage in MB. This includes all child processes.
Returns:
Total memory usage in MB
"""
process = psutil.Process()
main_memory = process.memory_full_info().pss
# Add memory usage of all child processes
for child in process.children(recursive=True):
try:
child_mem = child.memory_full_info().pss
main_memory += child_mem
except (psutil.NoSuchProcess, psutil.AccessDenied, AttributeError):
# Process might have terminated or doesn't support PSS, fall back to USS
print(f"Failed to get PSS for {child}, falling back to USS")
child_mem = child.memory_info().uss
main_memory += child_mem
return main_memory / (1024 * 1024)
def print_detailed_memory():
"""Print detailed memory information."""
process = psutil.Process()
print("\nDetailed memory information:")
try:
print(
f" USS (Unique Set Size): {process.memory_full_info().uss / (1024 * 1024):.2f} MB"
)
print(
f" PSS (Proportional Set Size): {process.memory_full_info().pss / (1024 * 1024):.2f} MB"
)
print(
f" RSS (Resident Set Size): {process.memory_info().rss / (1024 * 1024):.2f} MB"
)
except Exception:
print(" Detailed memory info not available")
def create_model():
"""Create a simple model for benchmarking."""
model = resnet18()
return model
def benchmark_dataloader(
dataset,
batch_size,
num_workers,
num_epochs=1,
max_batches=10,
multiprocessing_context=None,
logging_freq=10,
):
"""Benchmark a dataloader with specific configuration."""
print("\n--- Benchmarking DataLoader ---")
# Clear memory before starting
gc.collect()
torch.cuda.empty_cache()
# Create model
model = create_model()
# Measure memory before dataloader creation
memory_before = get_memory_usage()
print(f"Memory before DataLoader creation: {memory_before:.2f} MB")
print_detailed_memory()
# Measure dataloader initialization time
start = time.perf_counter()
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=torch.cuda.is_available(),
prefetch_factor=2 if num_workers > 0 else None,
multiprocessing_context=multiprocessing_context,
)
it = iter(dataloader)
dataloader_init_time = time.perf_counter() - start
# Measure memory after dataloader creation
memory_after = get_memory_usage()
print(f"Memory after DataLoader creation: {memory_after:.2f} MB")
print(f"Memory increase: {memory_after - memory_before:.2f} MB")
# Create model and optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
# Benchmark dataloading speed
model.train()
total_batches = 0
total_samples = 0
total_time = 0
total_data_load_time = 0
# Measure peak memory during training
peak_memory = memory_after
print(
f"\nStarting training loop with {num_epochs} epochs (max {max_batches} batches per epoch)"
)
for epoch in range(num_epochs):
while total_batches < max_batches:
batch_start = time.perf_counter()
try:
inputs, labels = next(it)
except StopIteration:
break
# Move data to device
inputs = inputs.to(device)
labels = labels.to(device)
# Capture data fetch time (including sending to device)
data_load_time = time.perf_counter() - batch_start
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Capture batch time
batch_time = time.perf_counter() - batch_start
total_batches += 1
total_samples += inputs.size(0)
total_data_load_time += data_load_time
total_time += batch_time
# Update peak memory and log memory usage periodically
if total_batches % 5 == 0:
# Force garbage collection before measuring memory
gc.collect()
current_memory = get_memory_usage()
if current_memory > peak_memory:
peak_memory = current_memory
if total_batches % logging_freq == 0:
print(
f"Epoch {epoch + 1}, Batch {total_batches}, "
f"Time: {batch_time:.4f}s, "
f"Memory: {current_memory:.2f} MB"
)
# Calculate statistics
avg_data_load_time = (
total_data_load_time / total_batches if total_batches > 0 else 0
)
avg_batch_time = total_time / total_batches if total_batches > 0 else 0
samples_per_second = total_samples / total_time if total_time > 0 else 0
results = {
"dataloader_init_time": dataloader_init_time,
"num_workers": num_workers,
"batch_size": batch_size,
"total_batches": total_batches,
"avg_batch_time": avg_batch_time,
"avg_data_load_time": avg_data_load_time,
"samples_per_second": samples_per_second,
"peak_memory_mb": peak_memory,
"memory_increase_mb": peak_memory - memory_before,
}
print("\nResults:")
print(f" DataLoader init time: {dataloader_init_time:.4f} seconds")
print(f" Average data loading time: {avg_data_load_time:.4f} seconds")
print(f" Average batch time: {avg_batch_time:.4f} seconds")
print(f" Samples per second: {samples_per_second:.2f}")
print(f" Peak memory usage: {peak_memory:.2f} MB")
print(f" Memory increase: {peak_memory - memory_before:.2f} MB")
# Clean up
del model, optimizer
del dataloader
# Force garbage collection
gc.collect()
torch.cuda.empty_cache()
return results
def main():
parser = argparse.ArgumentParser(
description="Benchmark PyTorch DataLoader with different worker methods"
)
parser.add_argument("--data_path", required=True, help="Path to dataset")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
parser.add_argument("--num_workers", type=int, default=4, help="Number of workers")
parser.add_argument(
"--max_batches",
type=int,
default=100,
help="Maximum number of batches per epoch",
)
parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs")
parser.add_argument(
"--multiprocessing_context",
choices=["fork", "spawn", "forkserver"],
default="forkserver",
help="Multiprocessing context to use (fork, spawn, forkserver)",
)
parser.add_argument(
"--dataset_copies",
type=int,
default=1,
help="Number of copies of the dataset to concatenate (for testing memory usage)",
)
parser.add_argument(
"--logging_freq",
type=int,
default=10,
help="Frequency of logging memory usage during training",
)
args = parser.parse_args()
# Print system info
print("System Information:")
# The following are handy for debugging if building from source worked correctly
print(f" PyTorch version: {torch.__version__}")
print(f" PyTorch location: {torch.__file__}")
print(f" Torchvision version: {torchvision.__version__}")
print(f" Torchvision location: {torchvision.__file__}")
print(f" CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f" CUDA device: {torch.cuda.get_device_name(0)}")
print(f" CPU count: {psutil.cpu_count(logical=True)}")
print(f" Physical CPU cores: {psutil.cpu_count(logical=False)}")
print(f" Total system memory: {psutil.virtual_memory().total / (1024**3):.2f} GB")
# Define transforms
transform = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
# Load dataset
print(f"\nLoading dataset from {args.data_path} ({args.dataset_copies} copies)")
# Try to load as ImageFolder
datasets = []
for _ in range(args.dataset_copies):
base_dataset = torchvision.datasets.ImageFolder(
args.data_path, transform=transform
)
datasets.append(copy.deepcopy(base_dataset))
del base_dataset
dataset = ConcatDataset(datasets)
print(f"Dataset size: {len(dataset)}")
# Run benchmark with specified worker method
benchmark_dataloader(
dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
multiprocessing_context=args.multiprocessing_context,
num_epochs=args.num_epochs,
max_batches=args.max_batches,
logging_freq=args.logging_freq,
)
if __name__ == "__main__":
main()
|