File: backends.md

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (402 lines) | stat: -rw-r--r-- 8,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
```{eval-rst}
.. role:: hidden
    :class: hidden-section
```

# torch.backends

```{eval-rst}
.. automodule:: torch.backends
```

`torch.backends` controls the behavior of various backends that PyTorch supports.

These backends include:

- `torch.backends.cpu`
- `torch.backends.cuda`
- `torch.backends.cudnn`
- `torch.backends.cusparselt`
- `torch.backends.mha`
- `torch.backends.mps`
- `torch.backends.mkl`
- `torch.backends.mkldnn`
- `torch.backends.nnpack`
- `torch.backends.openmp`
- `torch.backends.opt_einsum`
- `torch.backends.xeon`

## torch.backends.cpu

```{eval-rst}
.. automodule:: torch.backends.cpu
```

```{eval-rst}
.. autofunction::  torch.backends.cpu.get_cpu_capability
```

## torch.backends.cuda

```{eval-rst}
.. automodule:: torch.backends.cuda
```

```{eval-rst}
.. autofunction::  torch.backends.cuda.is_built
```

```{eval-rst}
.. currentmodule:: torch.backends.cuda.matmul
```

```{eval-rst}
.. attribute::  allow_tf32

    A :class:`bool` that controls whether TensorFloat-32 tensor cores may be used in matrix
    multiplications on Ampere or newer GPUs. allow_tf32 is going to be deprecated. See :ref:`tf32_on_ampere`.
```

```{eval-rst}
.. attribute::  allow_fp16_reduced_precision_reduction

    A :class:`bool` that controls whether reduced precision reductions (e.g., with fp16 accumulation type) are allowed with fp16 GEMMs.
```

```{eval-rst}
.. attribute::  allow_bf16_reduced_precision_reduction

    A :class:`bool` that controls whether reduced precision reductions are allowed with bf16 GEMMs.
```

```{eval-rst}
.. currentmodule:: torch.backends.cuda
```

```{eval-rst}
.. attribute::  cufft_plan_cache

    ``cufft_plan_cache`` contains the cuFFT plan caches for each CUDA device.
    Query a specific device `i`'s cache via `torch.backends.cuda.cufft_plan_cache[i]`.

    .. currentmodule:: torch.backends.cuda.cufft_plan_cache
    .. attribute::  size

        A readonly :class:`int` that shows the number of plans currently in a cuFFT plan cache.

    .. attribute::  max_size

        A :class:`int` that controls the capacity of a cuFFT plan cache.

    .. method::  clear()

        Clears a cuFFT plan cache.
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.preferred_blas_library
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.preferred_rocm_fa_library
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.preferred_linalg_library
```

```{eval-rst}
.. autoclass:: torch.backends.cuda.SDPAParams
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.flash_sdp_enabled
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.enable_mem_efficient_sdp
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.mem_efficient_sdp_enabled
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.enable_flash_sdp
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.math_sdp_enabled
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.enable_math_sdp
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.fp16_bf16_reduction_math_sdp_allowed
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.cudnn_sdp_enabled
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.enable_cudnn_sdp
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.is_flash_attention_available
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.can_use_flash_attention
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.can_use_efficient_attention
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.can_use_cudnn_attention
```

```{eval-rst}
.. autofunction:: torch.backends.cuda.sdp_kernel
```

## torch.backends.cudnn

```{eval-rst}
.. automodule:: torch.backends.cudnn
```

```{eval-rst}
.. autofunction:: torch.backends.cudnn.version
```

```{eval-rst}
.. autofunction:: torch.backends.cudnn.is_available
```

```{eval-rst}
.. attribute::  enabled

    A :class:`bool` that controls whether cuDNN is enabled.
```

```{eval-rst}
.. attribute::  allow_tf32

    A :class:`bool` that controls where TensorFloat-32 tensor cores may be used in cuDNN
    convolutions on Ampere or newer GPUs. allow_tf32 is going to be deprecated. See :ref:`tf32_on_ampere`.
```

```{eval-rst}
.. attribute::  deterministic

    A :class:`bool` that, if True, causes cuDNN to only use deterministic convolution algorithms.
    See also :func:`torch.are_deterministic_algorithms_enabled` and
    :func:`torch.use_deterministic_algorithms`.
```

```{eval-rst}
.. attribute::  benchmark

    A :class:`bool` that, if True, causes cuDNN to benchmark multiple convolution algorithms
    and select the fastest.
```

```{eval-rst}
.. attribute::  benchmark_limit

    A :class:`int` that specifies the maximum number of cuDNN convolution algorithms to try when
    `torch.backends.cudnn.benchmark` is True. Set `benchmark_limit` to zero to try every
    available algorithm. Note that this setting only affects convolutions dispatched via the
    cuDNN v8 API.
```

```{eval-rst}
.. py:module:: torch.backends.cudnn.rnn
```

## torch.backends.cusparselt

```{eval-rst}
.. automodule:: torch.backends.cusparselt
```

```{eval-rst}
.. autofunction:: torch.backends.cusparselt.version
```

```{eval-rst}
.. autofunction:: torch.backends.cusparselt.is_available
```

## torch.backends.mha

```{eval-rst}
.. automodule:: torch.backends.mha
```

```{eval-rst}
.. autofunction::  torch.backends.mha.get_fastpath_enabled
```

```{eval-rst}
.. autofunction::  torch.backends.mha.set_fastpath_enabled

```

## torch.backends.miopen

```{eval-rst}
.. automodule:: torch.backends.miopen
```

```{eval-rst}
.. attribute::  immediate

    A :class:`bool` that, if True, causes MIOpen to use Immediate Mode
    (https://rocm.docs.amd.com/projects/MIOpen/en/latest/how-to/find-and-immediate.html).
```

## torch.backends.mps

```{eval-rst}
.. automodule:: torch.backends.mps
```

```{eval-rst}
.. autofunction::  torch.backends.mps.is_available
```

```{eval-rst}
.. autofunction::  torch.backends.mps.is_built

```

## torch.backends.mkl

```{eval-rst}
.. automodule:: torch.backends.mkl
```

```{eval-rst}
.. autofunction::  torch.backends.mkl.is_available
```

```{eval-rst}
.. autoclass::  torch.backends.mkl.verbose

```

## torch.backends.mkldnn

```{eval-rst}
.. automodule:: torch.backends.mkldnn
```

```{eval-rst}
.. autofunction::  torch.backends.mkldnn.is_available
```

```{eval-rst}
.. autoclass::  torch.backends.mkldnn.verbose
```

## torch.backends.nnpack

```{eval-rst}
.. automodule:: torch.backends.nnpack
```

```{eval-rst}
.. autofunction::  torch.backends.nnpack.is_available
```

```{eval-rst}
.. autofunction::  torch.backends.nnpack.flags
```

```{eval-rst}
.. autofunction::  torch.backends.nnpack.set_flags
```

## torch.backends.openmp

```{eval-rst}
.. automodule:: torch.backends.openmp
```

```{eval-rst}
.. autofunction::  torch.backends.openmp.is_available
```

% Docs for other backends need to be added here.
% Automodules are just here to ensure checks run but they don't actually
% add anything to the rendered page for now.

```{eval-rst}
.. py:module:: torch.backends.quantized
```

```{eval-rst}
.. py:module:: torch.backends.xnnpack
```

```{eval-rst}
.. py:module:: torch.backends.kleidiai

```

## torch.backends.opt_einsum

```{eval-rst}
.. automodule:: torch.backends.opt_einsum
```

```{eval-rst}
.. autofunction:: torch.backends.opt_einsum.is_available
```

```{eval-rst}
.. autofunction:: torch.backends.opt_einsum.get_opt_einsum
```

```{eval-rst}
.. attribute::  enabled

    A :class:`bool` that controls whether opt_einsum is enabled (``True`` by default). If so,
    torch.einsum will use opt_einsum (https://optimized-einsum.readthedocs.io/en/stable/path_finding.html)
    if available to calculate an optimal path of contraction for faster performance.

    If opt_einsum is not available, torch.einsum will fall back to the default contraction path
    of left to right.
```

```{eval-rst}
.. attribute::  strategy

    A :class:`str` that specifies which strategies to try when ``torch.backends.opt_einsum.enabled``
    is ``True``. By default, torch.einsum will try the "auto" strategy, but the "greedy" and "optimal"
    strategies are also supported. Note that the "optimal" strategy is factorial on the number of
    inputs as it tries all possible paths. See more details in opt_einsum's docs
    (https://optimized-einsum.readthedocs.io/en/stable/path_finding.html).

```

## torch.backends.xeon

```{eval-rst}
.. automodule:: torch.backends.xeon
```

```{eval-rst}
.. py:module:: torch.backends.xeon.run_cpu
```