File: library.md

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (82 lines) | stat: -rw-r--r-- 2,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
(torch-library-docs)=

# torch.library

```{eval-rst}
.. py:module:: torch.library
.. currentmodule:: torch.library
```

torch.library is a collection of APIs for extending PyTorch's core library
of operators. It contains utilities for testing custom operators, creating new
custom operators, and extending operators defined with PyTorch's C++ operator
registration APIs (e.g. aten operators).

For a detailed guide on effectively using these APIs, please see
[PyTorch Custom Operators Landing Page](https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html)
for more details on how to effectively use these APIs.

## Testing custom ops

Use {func}`torch.library.opcheck` to test custom ops for incorrect usage of the
Python torch.library and/or C++ TORCH_LIBRARY APIs. Also, if your operator supports
training, use {func}`torch.autograd.gradcheck` to test that the gradients are
mathematically correct.

```{eval-rst}
.. autofunction:: opcheck
```

## Creating new custom ops in Python

Use {func}`torch.library.custom_op` to create new custom ops.

```{eval-rst}
.. autofunction:: custom_op
.. autofunction:: triton_op
.. autofunction:: wrap_triton
```

## Extending custom ops (created from Python or C++)

Use the `register.*` methods, such as {func}`torch.library.register_kernel` and
{func}`torch.library.register_fake`, to add implementations
for any operators (they may have been created using {func}`torch.library.custom_op` or
via PyTorch's C++ operator registration APIs).

```{eval-rst}
.. autofunction:: register_kernel
.. autofunction:: register_autocast
.. autofunction:: register_autograd
.. autofunction:: register_fake
.. autofunction:: register_vmap
.. autofunction:: impl_abstract
.. autofunction:: get_ctx
.. autofunction:: register_torch_dispatch
.. autofunction:: infer_schema
.. autoclass:: torch._library.custom_ops.CustomOpDef
   :members: set_kernel_enabled
.. autofunction:: get_kernel
```

## Low-level APIs

The following APIs are direct bindings to PyTorch's C++ low-level
operator registration APIs.

```{eval-rst}
.. warning:: The low-level operator registration APIs and the PyTorch Dispatcher are a complicated PyTorch concept. We recommend you use the higher level APIs above (that do not require a torch.library.Library object) when possible. `This blog post <http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/>`_ is a good starting point to learn about the PyTorch Dispatcher.
```

A tutorial that walks you through some examples on how to use this API is available on [Google Colab](https://colab.research.google.com/drive/1RRhSfk7So3Cn02itzLWE9K4Fam-8U011?usp=sharing).

```{eval-rst}
.. autoclass:: torch.library.Library
  :members:

.. autofunction:: fallthrough_kernel

.. autofunction:: define

.. autofunction:: impl
```