1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
.. currentmodule:: torch
.. _tensor-attributes-doc:
Tensor Attributes
=================
Each ``torch.Tensor`` has a :class:`torch.dtype`, :class:`torch.device`, and :class:`torch.layout`.
.. _dtype-doc:
torch.dtype
-----------
.. class:: dtype
A :class:`torch.dtype` is an object that represents the data type of a
:class:`torch.Tensor`. PyTorch has several different data types:
**Floating point dtypes**
========================================= ===============================
dtype description
========================================= ===============================
``torch.float32`` or ``torch.float`` 32-bit floating point, as defined in https://en.wikipedia.org/wiki/IEEE_754
``torch.float64`` or ``torch.double`` 64-bit floating point, as defined in https://en.wikipedia.org/wiki/IEEE_754
``torch.float16`` or ``torch.half`` 16-bit floating point, as defined in https://en.wikipedia.org/wiki/IEEE_754, S-E-M 1-5-10
``torch.bfloat16`` 16-bit floating point, sometimes referred to as Brain floating point, S-E-M 1-8-7
``torch.complex32`` or ``torch.chalf`` 32-bit complex with two `float16` components
``torch.complex64`` or ``torch.cfloat`` 64-bit complex with two `float32` components
``torch.complex128`` or ``torch.cdouble`` 128-bit complex with two `float64` components
``torch.float8_e4m3fn`` [shell]_, [1]_ 8-bit floating point, S-E-M 1-4-3, from https://arxiv.org/abs/2209.05433
``torch.float8_e5m2`` [shell]_ 8-bit floating point, S-E-M 1-5-2, from https://arxiv.org/abs/2209.05433
``torch.float8_e4m3fnuz`` [shell]_, [1]_ 8-bit floating point, S-E-M 1-4-3, from https://arxiv.org/pdf/2206.02915
``torch.float8_e5m2fnuz`` [shell]_, [1]_ 8-bit floating point, S-E-M 1-5-2, from https://arxiv.org/pdf/2206.02915
``torch.float8_e8m0fnu`` [shell]_, [1]_ 8-bit floating point, S-E-M 0-8-0, from https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
``torch.float4_e2m1fn_x2`` [shell]_, [1]_ packed 4-bit floating point, S-E-M 1-2-1, from https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
========================================= ===============================
**Integer dtypes**
========================================= ===============================
dtype description
========================================= ===============================
``torch.uint8`` 8-bit integer (unsigned)
``torch.int8`` 8-bit integer (signed)
``torch.uint16`` [shell]_, [2]_ 16-bit integer (unsigned)
``torch.int16`` or ``torch.short`` 16-bit integer (signed)
``torch.uint32`` [shell]_, [2]_ 32-bit integer (unsigned)
``torch.int32`` or ``torch.int`` 32-bit integer (signed)
``torch.uint64`` [shell]_, [2]_ 64-bit integer (unsigned)
``torch.int64`` or ``torch.long`` 64-bit integer (signed)
``torch.bool`` Boolean
========================================= ===============================
.. [shell] a shell dtype a specialized dtype with limited op and backend support.
Specifically, ops that support tensor creation (``torch.empty``, ``torch.fill``, ``torch.zeros``)
and operations which do not peek inside the data elements (``torch.cat``, ``torch.view``, ``torch.reshape``)
are supported. Ops that peek inside the data elements such as casting,
matrix multiplication, nan/inf checks are supported only on a case by
case basis, depending on maturity and presence of hardware accelerated kernels
and established use cases.
.. [1] The "fn", "fnu" and "fnuz" dtype suffixes mean:
"f" - finite value encodings only, no infinity;
"n" - nan value encodings differ from the IEEE spec;
"uz" - "unsigned zero" only, i.e. no negative zero encoding
.. [2]
Unsigned types asides from ``uint8`` are currently planned to only have
limited support in eager mode (they primarily exist to assist usage with
torch.compile); if you need eager support and the extra range is not needed,
we recommend using their signed variants instead. See
https://github.com/pytorch/pytorch/issues/58734 for more details.
**Note**: legacy constructors such as ``torch.*.FloatTensor``, ``torch.*.DoubleTensor``, ``torch.*.HalfTensor``,
``torch.*.BFloat16Tensor``, ``torch.*.ByteTensor``, ``torch.*.CharTensor``, ``torch.*.ShortTensor``, ``torch.*.IntTensor``,
``torch.*.LongTensor``, ``torch.*.BoolTensor`` only remain for backwards compatibility and should no longer be used.
To find out if a :class:`torch.dtype` is a floating point data type, the property :attr:`is_floating_point`
can be used, which returns ``True`` if the data type is a floating point data type.
To find out if a :class:`torch.dtype` is a complex data type, the property :attr:`is_complex`
can be used, which returns ``True`` if the data type is a complex data type.
.. _type-promotion-doc:
When the dtypes of inputs to an arithmetic operation (`add`, `sub`, `div`, `mul`) differ, we promote
by finding the minimum dtype that satisfies the following rules:
* If the type of a scalar operand is of a higher category than tensor operands
(where complex > floating > integral > boolean), we promote to a type with sufficient size to hold
all scalar operands of that category.
* If a zero-dimension tensor operand has a higher category than dimensioned operands,
we promote to a type with sufficient size and category to hold all zero-dim tensor operands of
that category.
* If there are no higher-category zero-dim operands, we promote to a type with sufficient size
and category to hold all dimensioned operands.
A floating point scalar operand has dtype `torch.get_default_dtype()` and an integral
non-boolean scalar operand has dtype `torch.int64`. Unlike numpy, we do not inspect
values when determining the minimum `dtypes` of an operand. Complex types
are not yet supported. Promotion for shell dtypes is not defined.
Promotion Examples::
>>> float_tensor = torch.ones(1, dtype=torch.float)
>>> double_tensor = torch.ones(1, dtype=torch.double)
>>> complex_float_tensor = torch.ones(1, dtype=torch.complex64)
>>> complex_double_tensor = torch.ones(1, dtype=torch.complex128)
>>> int_tensor = torch.ones(1, dtype=torch.int)
>>> long_tensor = torch.ones(1, dtype=torch.long)
>>> uint_tensor = torch.ones(1, dtype=torch.uint8)
>>> bool_tensor = torch.ones(1, dtype=torch.bool)
# zero-dim tensors
>>> long_zerodim = torch.tensor(1, dtype=torch.long)
>>> int_zerodim = torch.tensor(1, dtype=torch.int)
>>> torch.add(5, 5).dtype
torch.int64
# 5 is an int64, but does not have higher category than int_tensor so is not considered.
>>> (int_tensor + 5).dtype
torch.int32
>>> (int_tensor + long_zerodim).dtype
torch.int32
>>> (long_tensor + int_tensor).dtype
torch.int64
>>> (bool_tensor + long_tensor).dtype
torch.int64
>>> (bool_tensor + uint_tensor).dtype
torch.uint8
>>> (float_tensor + double_tensor).dtype
torch.float64
>>> (complex_float_tensor + complex_double_tensor).dtype
torch.complex128
>>> (bool_tensor + int_tensor).dtype
torch.int32
# Since long is a different kind than float, result dtype only needs to be large enough
# to hold the float.
>>> torch.add(long_tensor, float_tensor).dtype
torch.float32
When the output tensor of an arithmetic operation is specified, we allow casting to its `dtype` except that:
* An integral output tensor cannot accept a floating point tensor.
* A boolean output tensor cannot accept a non-boolean tensor.
* A non-complex output tensor cannot accept a complex tensor
Casting Examples::
# allowed:
>>> float_tensor *= float_tensor
>>> float_tensor *= int_tensor
>>> float_tensor *= uint_tensor
>>> float_tensor *= bool_tensor
>>> float_tensor *= double_tensor
>>> int_tensor *= long_tensor
>>> int_tensor *= uint_tensor
>>> uint_tensor *= int_tensor
# disallowed (RuntimeError: result type can't be cast to the desired output type):
>>> int_tensor *= float_tensor
>>> bool_tensor *= int_tensor
>>> bool_tensor *= uint_tensor
>>> float_tensor *= complex_float_tensor
.. _device-doc:
torch.device
------------
.. class:: device
A :class:`torch.device` is an object representing the device on which a :class:`torch.Tensor` is
or will be allocated.
The :class:`torch.device` contains a device type (most commonly "cpu" or
"cuda", but also potentially :doc:`"mps" <mps>`, :doc:`"xpu" <xpu>`,
`"xla" <https://github.com/pytorch/xla/>`_ or :doc:`"meta" <meta>`) and optional
device ordinal for the device type. If the device ordinal is not present, this object will always represent
the current device for the device type, even after :func:`torch.cuda.set_device()` is called; e.g.,
a :class:`torch.Tensor` constructed with device ``'cuda'`` is equivalent to ``'cuda:X'`` where X is
the result of :func:`torch.cuda.current_device()`.
A :class:`torch.Tensor`'s device can be accessed via the :attr:`Tensor.device` property.
A :class:`torch.device` can be constructed using:
* A device string, which is a string representation of the device type and optionally the device ordinal.
* A device type and a device ordinal.
* A device ordinal, where the current :ref:`accelerator<accelerators>` type will be used.
Via a device string:
::
>>> torch.device('cuda:0')
device(type='cuda', index=0)
>>> torch.device('cpu')
device(type='cpu')
>>> torch.device('mps')
device(type='mps')
>>> torch.device('cuda') # implicit index is the "current device index"
device(type='cuda')
Via a device type and a device ordinal:
::
>>> torch.device('cuda', 0)
device(type='cuda', index=0)
>>> torch.device('mps', 0)
device(type='mps', index=0)
>>> torch.device('cpu', 0)
device(type='cpu', index=0)
Via a device ordinal:
.. note::
This method will raise a RuntimeError if no accelerator is currently detected.
::
>>> torch.device(0) # the current accelerator is cuda
device(type='cuda', index=0)
>>> torch.device(1) # the current accelerator is xpu
device(type='xpu', index=1)
>>> torch.device(0) # no current accelerator detected
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Cannot access accelerator device when none is available.
The device object can also be used as a context manager to change the default
device tensors are allocated on:
::
>>> with torch.device('cuda:1'):
... r = torch.randn(2, 3)
>>> r.device
device(type='cuda', index=1)
This context manager has no effect if a factory function is passed an explicit,
non-None device argument. To globally change the default device, see also
:func:`torch.set_default_device`.
.. warning::
This function imposes a slight performance cost on every Python
call to the torch API (not just factory functions). If this
is causing problems for you, please comment on
https://github.com/pytorch/pytorch/issues/92701
.. note::
The :class:`torch.device` argument in functions can generally be substituted with a string.
This allows for fast prototyping of code.
>>> # Example of a function that takes in a torch.device
>>> cuda1 = torch.device('cuda:1')
>>> torch.randn((2,3), device=cuda1)
>>> # You can substitute the torch.device with a string
>>> torch.randn((2,3), device='cuda:1')
.. note::
Methods which take a device will generally accept a (properly formatted) string
or an integer device ordinal, i.e. the following are all equivalent:
>>> torch.randn((2,3), device=torch.device('cuda:1'))
>>> torch.randn((2,3), device='cuda:1')
>>> torch.randn((2,3), device=1) # equivalent to 'cuda:1' if the current accelerator is cuda
.. note::
Tensors are never moved automatically between devices and require an explicit call from the user. Scalar Tensors (with tensor.dim()==0) are the only exception to this rule and they are automatically transferred from CPU to GPU when needed as this operation can be done "for free".
Example:
>>> # two scalars
>>> torch.ones(()) + torch.ones(()).cuda() # OK, scalar auto-transferred from CPU to GPU
>>> torch.ones(()).cuda() + torch.ones(()) # OK, scalar auto-transferred from CPU to GPU
>>> # one scalar (CPU), one vector (GPU)
>>> torch.ones(()) + torch.ones(1).cuda() # OK, scalar auto-transferred from CPU to GPU
>>> torch.ones(1).cuda() + torch.ones(()) # OK, scalar auto-transferred from CPU to GPU
>>> # one scalar (GPU), one vector (CPU)
>>> torch.ones(()).cuda() + torch.ones(1) # Fail, scalar not auto-transferred from GPU to CPU and non-scalar not auto-transferred from CPU to GPU
>>> torch.ones(1) + torch.ones(()).cuda() # Fail, scalar not auto-transferred from GPU to CPU and non-scalar not auto-transferred from CPU to GPU
.. _layout-doc:
torch.layout
------------
.. class:: layout
.. warning::
The ``torch.layout`` class is in beta and subject to change.
A :class:`torch.layout` is an object that represents the memory layout of a
:class:`torch.Tensor`. Currently, we support ``torch.strided`` (dense Tensors)
and have beta support for ``torch.sparse_coo`` (sparse COO Tensors).
``torch.strided`` represents dense Tensors and is the memory layout that
is most commonly used. Each strided tensor has an associated
:class:`torch.Storage`, which holds its data. These tensors provide
multi-dimensional, `strided <https://en.wikipedia.org/wiki/Stride_of_an_array>`_
view of a storage. Strides are a list of integers: the k-th stride
represents the jump in the memory necessary to go from one element to the
next one in the k-th dimension of the Tensor. This concept makes it possible
to perform many tensor operations efficiently.
Example::
>>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
>>> x.stride()
(5, 1)
>>> x.t().stride()
(1, 5)
For more information on ``torch.sparse_coo`` tensors, see :ref:`sparse-docs`.
torch.memory_format
-------------------
.. class:: memory_format
A :class:`torch.memory_format` is an object representing the memory format on which a :class:`torch.Tensor` is
or will be allocated.
Possible values are:
- ``torch.contiguous_format``:
Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in decreasing order.
- ``torch.channels_last``:
Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in
``strides[0] > strides[2] > strides[3] > strides[1] == 1`` aka NHWC order.
- ``torch.channels_last_3d``:
Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in
``strides[0] > strides[2] > strides[3] > strides[4] > strides[1] == 1`` aka NDHWC order.
- ``torch.preserve_format``:
Used in functions like `clone` to preserve the memory format of the input tensor. If input tensor is
allocated in dense non-overlapping memory, the output tensor strides will be copied from the input.
Otherwise output strides will follow ``torch.contiguous_format``
|