File: fuse_module.py

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (56 lines) | stat: -rw-r--r-- 1,455 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import timeit

import torch
import torch.nn as nn
from functorch.compile import compiled_module, tvm_compile


def nop(f, _):
    return f


fw_compiler = tvm_compile(target="llvm", tuning_logfile="fw_keops")
bw_compiler = tvm_compile(target="llvm", tuning_logfile="bw_keops")
fw_compiler = nop
bw_compiler = nop


def run(mod, input):
    out = mod(input)
    out.sum().backward()
    grads = [p.grad for p in mod.parameters()]
    return (out, *grads)


class Foo(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.param = nn.Parameter(torch.randn(1))
        self.register_buffer("buf", torch.randn(1))

    def forward(self, x):
        return (self.param * x + self.buf).sum(dim=0)


input = torch.randn(1)
mod = Foo()
compiled_mod = compiled_module(mod, fw_compiler, bw_compiler)

for a, b in zip(run(mod, input), run(compiled_mod, input)):
    torch.testing.assert_close(a, b)

out = mod(input)
out.sum().backward()
mod.param.data -= mod.param.grad
compiled_mod.orig_module.param.data -= compiled_mod.orig_module.param.grad
compiled_mod.orig_module.param.grad = None

for a, b in zip(run(mod, input), run(compiled_mod, input)):
    torch.testing.assert_close(a, b)

for _ in range(5):
    i = 10000
    t = timeit.Timer("mod(input)", globals=globals()).timeit(10000)
    print(f"eager {t / i * 1e6}")
    t = timeit.Timer("compiled_mod(input)", globals=globals()).timeit(10000)
    print(f"compiled {t / i * 1e6}")