File: generate_lowered_cpu.py

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (62 lines) | stat: -rw-r--r-- 1,403 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import copy

import click

import torch


class Serializer(torch.nn.Module):
    def __init__(self, data):
        super().__init__()
        for key in data:
            setattr(self, key, data[key])


@click.command()
@click.option(
    "--input-path",
    type=str,
    default="",
    required=True,
    help="path to the ExportedProgram",
)
@click.option(
    "--output-path",
    type=str,
    default="",
    required=True,
)
def main(
    input_path: str = "",
    output_path: str = "",
) -> None:
    data = {}
    ep = torch.export.load(input_path)
    with torch.no_grad():
        example_inputs = ep.example_inputs[0]
        # Get scripted original module.
        module = torch.jit.trace(copy.deepcopy(ep.module()), example_inputs)

        # Get aot compiled module.
        so_path = torch._inductor.aot_compile(ep.module(), example_inputs)
        runner = torch.fx.Interpreter(ep.module())
        output = runner.run(example_inputs)
        if isinstance(output, (list, tuple)):
            output = list(output)
        else:
            output = [output]

        data.update(
            {
                "script_module": module,
                "model_so_path": so_path,
                "inputs": list(example_inputs),
                "outputs": output,
            }
        )

    torch.jit.script(Serializer(data)).save(output_path)


if __name__ == "__main__":
    main()