File: test.py

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (219 lines) | stat: -rw-r--r-- 7,028 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch._inductor.config
from torch._export import aot_compile
from torch.export import Dim


torch.manual_seed(1337)


class Net(torch.nn.Module):
    def __init__(self, device, size=4):
        super().__init__()
        self.w_pre = torch.randn(size, size, device=device)
        self.w_add = torch.randn(size, size, device=device)

    def forward(self, x):
        w_transpose = torch.transpose(self.w_pre, 0, 1)
        w_relu = torch.nn.functional.relu(w_transpose)
        w = w_relu + self.w_add
        return torch.matmul(x, w)


class NetWithTensorConstants(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.w = torch.randn(30, 1, device="cuda")

    def forward(self, x, y):
        z = self.w * x * y
        return z[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17]]


data = {}
large_data = {}
cuda_alloc_data = {}
data_with_tensor_constants = {}


# Basice AOTI model test generation.
def generate_basic_tests():
    for device in ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]:
        for use_runtime_constant_folding in [True, False]:
            if device == "cpu" and use_runtime_constant_folding:
                # We do not test runtime const folding for cpu mode.
                continue
            model = Net(device).to(device=device)
            x = torch.randn((4, 4), device=device)
            with torch.no_grad():
                ref_output = model(x)

            torch._dynamo.reset()
            with torch.no_grad():
                dim0_x = Dim("dim0_x", min=1, max=1024)
                dynamic_shapes = {"x": {0: dim0_x}}
                model_so_path = aot_compile(
                    model,
                    (x,),
                    dynamic_shapes=dynamic_shapes,
                    options={
                        "aot_inductor.use_runtime_constant_folding": use_runtime_constant_folding
                    },
                )
                # Also store a .pt2 file using the aoti_compile_and_package API
                pt2_package_path = torch._inductor.aoti_compile_and_package(
                    torch.export.export(
                        model,
                        (x,),
                        dynamic_shapes=dynamic_shapes,
                    ),
                    inductor_configs={
                        "aot_inductor.use_runtime_constant_folding": use_runtime_constant_folding
                    },
                )

            suffix = f"{device}"
            if use_runtime_constant_folding:
                suffix += "_use_runtime_constant_folding"
            data.update(
                {
                    f"model_so_path_{suffix}": model_so_path,
                    f"pt2_package_path_{suffix}": pt2_package_path,
                    f"inputs_{suffix}": [x],
                    f"outputs_{suffix}": [ref_output],
                    f"w_pre_{suffix}": model.w_pre,
                    f"w_add_{suffix}": model.w_add,
                }
            )


def generate_basic_tests_consts_cpp():
    backup_consts_asm_cfg: bool = (
        torch._inductor.config.aot_inductor.use_consts_asm_build
    )
    torch._inductor.config.aot_inductor.use_consts_asm_build = False

    # Test consts cpp build again.
    generate_basic_tests()

    torch._inductor.config.aot_inductor.use_consts_asm_build = backup_consts_asm_cfg


def generate_large_tests():
    device = "cuda"
    model = Net(device, size=4096).to(device=device)
    x = torch.randn((4096, 4096), device=device)
    with torch.no_grad():
        ref_output = model(x)

    torch._dynamo.reset()
    for use_runtime_constant_folding in [True, False]:
        with torch.no_grad():
            model_so_path = aot_compile(
                model,
                (x,),
                options={
                    "aot_inductor.use_runtime_constant_folding": use_runtime_constant_folding
                },
            )
            # Also store a .pt2 file using the aoti_compile_and_package API
            pt2_package_path = torch._inductor.aoti_compile_and_package(
                torch.export.export(
                    model,
                    (x,),
                ),
                inductor_configs={
                    "aot_inductor.use_runtime_constant_folding": use_runtime_constant_folding
                },
            )

        suffix = "_use_runtime_constant_folding" if use_runtime_constant_folding else ""
        large_data.update(
            {  # noqa: F541
                f"model_so_path{suffix}": model_so_path,
                f"pt2_package_path{suffix}": pt2_package_path,
                "inputs": [x],
                "outputs": [ref_output],
                "w_pre": model.w_pre,
                "w_add": model.w_add,
            }
        )


def generate_cuda_alloc_test():
    device = "cuda"
    model = Net(device, size=4096).to(device=device)
    x = torch.randn((4096, 4096), device=device)
    with torch.no_grad():
        ref_output = model(x)

    torch._dynamo.reset()
    with torch.no_grad():
        model_so_path = aot_compile(
            model,
            (x,),
            options={"aot_inductor.weight_use_caching_allocator": True},
        )

    cuda_alloc_data.update(
        {  # noqa: F541
            "model_so_path": model_so_path,
            "inputs": [x],
            "outputs": [ref_output],
            "w_pre": model.w_pre,
            "w_add": model.w_add,
        }
    )


# AOTI model which will create additional tensors during autograd.
def generate_test_with_additional_tensors():
    if not torch.cuda.is_available():
        return

    model = NetWithTensorConstants()
    x = torch.randn((30, 1), device="cuda")
    y = torch.randn((30, 1), device="cuda")
    with torch.no_grad():
        ref_output = model(x, y)

    torch._dynamo.reset()
    with torch.no_grad():
        model_so_path = aot_compile(model, (x, y))
        # Also store a .pt2 file using the aoti_compile_and_package API
        pt2_package_path = torch._inductor.aoti_compile_and_package(
            torch.export.export(model, (x, y))
        )

    data_with_tensor_constants.update(
        {
            "model_so_path": model_so_path,
            "pt2_package_path": pt2_package_path,
            "inputs": [x, y],
            "outputs": [ref_output],
            "w": model.w,
        }
    )


generate_basic_tests()
generate_basic_tests_consts_cpp()
generate_large_tests()
generate_test_with_additional_tensors()
generate_cuda_alloc_test()


# Use this to communicate tensors to the cpp code
class Serializer(torch.nn.Module):
    def __init__(self, data):
        super().__init__()
        for key in data:
            setattr(self, key, data[key])


torch.jit.script(Serializer(data)).save("data.pt")
torch.jit.script(Serializer(large_data)).save("large_data.pt")
torch.jit.script(Serializer(data_with_tensor_constants)).save(
    "data_with_tensor_constants.pt"
)
torch.jit.script(Serializer(cuda_alloc_data)).save("cuda_alloc_data.pt")