File: tensor_cuda.cpp

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (188 lines) | stat: -rw-r--r-- 6,828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#include <gtest/gtest.h>

#include <ATen/ATen.h>
#include <ATen/Context.h>
#include <torch/torch.h>

#include <cmath>

#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_)            \
  ASSERT_TRUE(                                                             \
      tensor.device().type() == at::Device((device_), (index_)).type());   \
  ASSERT_TRUE(                                                             \
      tensor.device().index() == at::Device((device_), (index_)).index()); \
  ASSERT_EQ(tensor.dtype(), (type_));                                      \
  ASSERT_TRUE(tensor.layout() == (layout_))

TEST(TensorTest, AllocatesTensorOnTheCorrectDevice_MultiCUDA) {
  auto tensor = at::tensor({1, 2, 3}, at::device({at::kCUDA, 1}));
  ASSERT_EQ(tensor.device().type(), at::Device::Type::CUDA);
  ASSERT_EQ(tensor.device().index(), 1);
}

TEST(TensorTest, ToDevice_MultiCUDA) {
  auto tensor = at::empty({3, 4});
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);

  tensor = tensor.to({at::kCUDA, 1});
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided);

  tensor = tensor.to({at::kCUDA, 0});
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kFloat, at::kStrided);

  tensor = tensor.to({at::kCUDA, 1});
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided);

  tensor = tensor.to(at::Device(at::kCPU));
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);

  tensor = tensor.to(at::kCUDA);
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kFloat, at::kStrided);

  tensor = tensor.to(at::TensorOptions({at::kCUDA, 1}));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kFloat, at::kStrided);

  tensor = tensor.to(at::TensorOptions({at::kCUDA, 0}));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kFloat, at::kStrided);

  tensor = tensor.to(at::TensorOptions(at::kDouble));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kDouble, at::kStrided);

  tensor = tensor.to(at::TensorOptions({at::kCUDA, 1}));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kDouble, at::kStrided);

  tensor = tensor.to(at::TensorOptions(at::kInt));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kInt, at::kStrided);

  tensor = tensor.to(at::TensorOptions(at::Device(at::kCPU)));
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);

  tensor = tensor.to(at::TensorOptions(at::kCUDA));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kInt, at::kStrided);
}

TEST(TensorTest, ToTensorAndTensorAttributes_MultiCUDA) {
  auto tensor = at::empty({3, 4});
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);

  auto other = at::empty({3, 4}, at::kFloat);
  tensor = tensor.to(other);
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);

  other = at::empty({3, 4}, at::TensorOptions(at::kCUDA).dtype(at::kDouble));
  tensor = tensor.to(other.dtype());
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
  tensor = tensor.to(other.device());
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kDouble, at::kStrided);

  other = at::empty({3, 4}, at::TensorOptions({at::kCUDA, 1}).dtype(at::kLong));
  tensor = tensor.to(other.device(), other.dtype());
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kLong, at::kStrided);

  other = at::empty({3, 4}, at::kFloat);
  tensor = tensor.to(other.options());
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
}

TEST(TensorTest, ToDoesNotCopyWhenOptionsAreAllTheSame_CUDA) {
  auto tensor = at::empty(
      {3, 4}, at::TensorOptions(at::kFloat).device(at::Device("cuda")));
  auto hopefully_not_copy = tensor.to(tensor.options());
  ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
  hopefully_not_copy = tensor.to(at::kFloat);
  ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
  hopefully_not_copy = tensor.to("cuda");
  ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
  hopefully_not_copy = tensor.to(at::TensorOptions("cuda"));
  ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
  hopefully_not_copy = tensor.to(at::TensorOptions(at::kFloat));
  ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}

TEST(TensorTest, ToDeviceAndDtype_MultiCUDA) {
  auto tensor = at::empty({3, 4});
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);

  tensor = tensor.to({at::kCUDA, 1}, at::kInt);
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kInt, at::kStrided);

  tensor = tensor.to(at::TensorOptions({at::kCUDA, 0}).dtype(at::kLong));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 0, at::kLong, at::kStrided);

  tensor = tensor.to(at::TensorOptions({at::kCUDA, 1}).dtype(at::kDouble));
  REQUIRE_TENSOR_OPTIONS(at::kCUDA, 1, at::kDouble, at::kStrided);

  tensor = tensor.to(at::kCPU, at::kInt);
  REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
}

TEST(TensorTest, MagmaInitializesCorrectly_CUDA) {
  // Any tensor will work here as long as it's invertible
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
  float data[] = {1, 1, 1, 0, 0, 3, 1, 2, 2, 3, 1, 0, 1, 0, 2, 1};
  auto tensor =
      at::from_blob(data, {4, 4}, at::TensorOptions(at::kFloat)).cuda();
  if (at::hasMAGMA()) {
    at::inverse(tensor);
  }
}

#ifdef USE_CUDA
#include <ATen/cuda/CUDAConfig.h>
#if AT_CUDNN_ENABLED()
TEST(CuDNNBatchNormTest, OutVariantMatchesFunctional) {
  if (!torch::cuda::is_available()) {
    GTEST_SKIP() << "CUDA is not available";
  }
  if (!at::Context::hasCuDNN()) {
    GTEST_SKIP() << "cuDNN is not available";
  }

  auto device = torch::device(torch::kCUDA);

  auto input = torch::rand({2, 3, 4, 4}, device);
  auto weight = torch::randn({3}, device);
  auto bias = torch::randn({3}, device);
  auto running_mean = torch::zeros({3}, device);
  auto running_var = torch::ones({3}, device);

  bool training = true;
  double exponential_average_factor = 0.1;
  double epsilon = 1e-5;

  auto output = torch::empty_like(input);
  auto save_mean = torch::empty({3}, device);
  auto save_var = torch::empty({3}, device);
  auto reserve = torch::empty({0}, device.dtype(torch::kByte));

  at::native::cudnn_batch_norm_out(
      input,
      weight,
      bias,
      running_mean,
      running_var,
      training,
      exponential_average_factor,
      epsilon,
      output,
      save_mean,
      save_var,
      reserve);

  auto ref_outputs = at::native::cudnn_batch_norm(
      input,
      weight,
      bias,
      running_mean,
      running_var,
      training,
      exponential_average_factor,
      epsilon);

  ASSERT_TRUE(torch::allclose(output, std::get<0>(ref_outputs)));
  ASSERT_TRUE(torch::allclose(save_mean, std::get<1>(ref_outputs)));
  ASSERT_TRUE(torch::allclose(save_var, std::get<2>(ref_outputs)));
  ASSERT_TRUE(torch::equal(reserve, std::get<3>(ref_outputs)));
}
#endif // AT_CUDNN_ENABLED()
#endif // USE_CUDA