1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
# Owner(s): ["oncall: distributed"]
import io
import sys
from typing import Optional
import torch
import torch.distributed as dist
from torch.distributed._shard.sharded_tensor import (
Shard,
ShardedTensor,
ShardedTensorMetadata,
ShardMetadata,
)
from torch.distributed._shard.sharded_tensor.metadata import TensorProperties
from torch.distributed.c10d_logger import _c10d_logger
from torch.distributed.checkpoint.logger import _dcp_logger
from torch.distributed.checkpoint.metadata import MetadataIndex
from torch.distributed.checkpoint.utils import (
_create_file_view,
_DistWrapper,
find_state_dict_object,
)
from torch.testing._internal.common_utils import (
run_tests,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
with_comms,
)
from torch.testing._internal.distributed.distributed_utils import with_fake_comms
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
def create_sharded_tensor(rank, world_size, shards_per_rank):
shards_metadata = []
local_shards = []
for idx in range(0, world_size * shards_per_rank):
shard_rank = idx // shards_per_rank
shard_md = ShardMetadata(
shard_offsets=[idx * 8], shard_sizes=[8], placement=f"rank:{shard_rank}/cpu"
)
shards_metadata.append(shard_md)
if shard_rank == rank:
shard = Shard.from_tensor_and_offsets(
torch.rand(*shard_md.shard_sizes),
shard_offsets=shard_md.shard_offsets,
rank=rank,
)
local_shards.append(shard)
sharded_tensor_md = ShardedTensorMetadata(
shards_metadata=shards_metadata,
size=torch.Size([8 * len(shards_metadata)]),
tensor_properties=TensorProperties.create_from_tensor(torch.zeros(1)),
)
return ShardedTensor._init_from_local_shards_and_global_metadata(
local_shards=local_shards, sharded_tensor_metadata=sharded_tensor_md
)
class TestMedatadaIndex(TestCase):
def test_init_convert_offset(self):
a = MetadataIndex("foo", [1, 2])
b = MetadataIndex("foo", torch.Size([1, 2]))
self.assertEqual(a, b)
def test_index_hint_ignored_on_equals(self):
a = MetadataIndex("foo")
b = MetadataIndex("foo", index=99)
self.assertEqual(a, b)
def test_index_hint_ignored_on_hash(self):
a = MetadataIndex("foo")
b = MetadataIndex("foo", index=99)
self.assertEqual(hash(a), hash(b))
def test_flat_data(self):
state_dict = {
"a": torch.rand(10),
"b": [1, 2, 3],
}
a = find_state_dict_object(state_dict, MetadataIndex("a"))
self.assertEqual(a, state_dict["a"])
a = find_state_dict_object(state_dict, MetadataIndex("a", [0]))
self.assertEqual(a, state_dict["a"])
a = find_state_dict_object(state_dict, MetadataIndex("a", index=99))
self.assertEqual(a, state_dict["a"])
b = find_state_dict_object(state_dict, MetadataIndex("b"))
self.assertEqual(b, state_dict["b"])
b = find_state_dict_object(state_dict, MetadataIndex("b", index=1))
self.assertEqual(b, state_dict["b"])
with self.assertRaisesRegex(ValueError, "FQN"):
find_state_dict_object(state_dict, MetadataIndex("c"))
with self.assertRaisesRegex(ValueError, "ShardedTensor"):
find_state_dict_object(state_dict, MetadataIndex("b", [1]))
@with_fake_comms(rank=0, world_size=2)
def test_sharded_tensor_lookup(self):
st = create_sharded_tensor(rank=0, world_size=2, shards_per_rank=3)
state_dict = {"st": st}
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8]))
self.assertEqual(obj, st.local_shards()[1].tensor)
# good hint
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=1))
self.assertEqual(obj, st.local_shards()[1].tensor)
# bad hint
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=2))
self.assertEqual(obj, st.local_shards()[1].tensor)
# broken hint
obj = find_state_dict_object(state_dict, MetadataIndex("st", [8], index=99))
self.assertEqual(obj, st.local_shards()[1].tensor)
with self.assertRaisesRegex(ValueError, "no offset was provided"):
find_state_dict_object(state_dict, MetadataIndex("st"))
with self.assertRaisesRegex(ValueError, "Could not find shard"):
find_state_dict_object(state_dict, MetadataIndex("st", [1]))
def test_dcp_logger(self):
self.assertTrue(_c10d_logger is not _dcp_logger)
self.assertEqual(1, len(_c10d_logger.handlers))
class TestReaderView(TestCase):
def setUp(self):
buffer = io.BytesIO(bytearray(range(ord("A"), ord("Z") + 1)))
self.front_view = _create_file_view(buffer, 0, 5)
buffer = io.BytesIO(bytearray(range(ord("A"), ord("Z") + 1)))
self.middle_view = _create_file_view(buffer, 10, 5)
buffer = io.BytesIO(bytearray(range(ord("A"), ord("Z") + 1)))
self.back_view = _create_file_view(buffer, len(buffer.getbuffer()) - 5, 5)
def testShortRead(self):
self.assertEqual(self.front_view.read(3), b"ABC")
self.assertEqual(self.middle_view.read(3), b"KLM")
self.assertEqual(self.back_view.read(3), b"VWX")
def testLongRead(self):
self.assertEqual(self.front_view.read(10), b"ABCDE")
self.assertEqual(self.middle_view.read(10), b"KLMNO")
self.assertEqual(self.back_view.read(10), b"VWXYZ")
def testAllRead(self):
self.assertEqual(self.front_view.read(-1), b"ABCDE")
self.assertEqual(self.middle_view.read(-1), b"KLMNO")
self.assertEqual(self.back_view.read(-1), b"VWXYZ")
def testShortReadinto(self):
ba = bytearray(3)
self.assertEqual(self.front_view.readinto(ba), 3)
self.assertEqual(ba, b"ABC")
self.assertEqual(self.middle_view.readinto(ba), 3)
self.assertEqual(ba, b"KLM")
self.assertEqual(self.back_view.readinto(ba), 3)
self.assertEqual(ba, b"VWX")
def testLongReadinto(self):
ba = bytearray(8)
self.assertEqual(self.front_view.readinto(ba), 5)
self.assertEqual(ba, b"ABCDE\0\0\0")
self.assertEqual(self.front_view.readinto(ba), 0)
self.assertEqual(ba, b"ABCDE\0\0\0")
self.assertEqual(self.middle_view.readinto(ba), 5)
self.assertEqual(ba, b"KLMNO\0\0\0")
self.assertEqual(self.middle_view.readinto(ba), 0)
self.assertEqual(ba, b"KLMNO\0\0\0")
self.assertEqual(self.back_view.readinto(ba), 5)
self.assertEqual(ba, b"VWXYZ\0\0\0")
self.assertEqual(self.back_view.readinto(ba), 0)
self.assertEqual(ba, b"VWXYZ\0\0\0")
class TestDistWrapper(DTensorTestBase):
@property
def world_size(self):
return min(4, torch.cuda.device_count())
@with_comms
@skip_if_lt_x_gpu(4)
def test_gather_object(self):
mesh_2d = dist.init_device_mesh(self.device_type, (2, self.world_size // 2))
torch.random.manual_seed(dist.get_rank())
dist_wrapper = _DistWrapper(
mesh_2d.get_group(1), use_dist=True, coordinator_rank=0
)
rank = mesh_2d.get_rank()
half_world_size = self.world_size // 2
gathered_objects = dist_wrapper.gather_object(rank)
expected_objects = (
list(range(rank, rank + half_world_size))
if rank % half_world_size == 0
else None
)
assert gathered_objects == expected_objects
@with_comms
@skip_if_lt_x_gpu(4)
def test_scatter_object(self):
mesh_2d = dist.init_device_mesh(self.device_type, (2, self.world_size // 2))
torch.random.manual_seed(dist.get_rank())
dist_wrapper = _DistWrapper(
mesh_2d.get_group(1), use_dist=True, coordinator_rank=0
)
rank = mesh_2d.get_rank()
half_world_size = self.world_size // 2
objects = (
list(range(rank, rank + half_world_size))
if rank % half_world_size == 0
else None
)
scattered_objects = dist_wrapper.scatter_object(objects)
expected_objects = rank
assert scattered_objects == expected_objects
@with_comms
@skip_if_lt_x_gpu(2)
def test_broadcast_object_with_nonzero_coordinator(self):
# Everybody uses WORLD, but src is coordinator_rank=1
dist_wrapper = _DistWrapper(
group=dist.group.WORLD,
use_dist=True,
coordinator_rank=1,
)
rank = dist.get_rank()
# only local rank 1 supplies the payload
payload: Optional[int] = rank if rank == 1 else None
result = dist_wrapper.broadcast_object(payload)
# every rank should receive the value from global rank 1
assert result == 1
@with_comms
@skip_if_lt_x_gpu(4)
def test_broadcast_object_global_local_mismatch(self):
# reproduces issue 152310
mesh_2d = dist.init_device_mesh(self.device_type, (2, self.world_size // 2))
dist_wrapper = _DistWrapper(
group=mesh_2d.get_group(1),
use_dist=True,
coordinator_rank=1, # local coordinator index within the subgroup
)
rank = mesh_2d.get_rank()
# only the local coordinator in each subgroup provides payload
payload: Optional[int] = rank if dist_wrapper.is_coordinator else None
got = dist_wrapper.broadcast_object(payload)
# ensure we broadcast from the *global* coordinator rank,
# not the local index. For rows [0,1] this is global rank 1;
# for rows [2,3] this is global rank 3.
expected = dist_wrapper.global_coordinator_rank
assert got == expected
@with_comms
@skip_if_lt_x_gpu(2)
def test_barrier(self):
mesh_2d = dist.init_device_mesh(self.device_type, (2, self.world_size // 2))
torch.random.manual_seed(dist.get_rank())
dist_wrapper = _DistWrapper(
mesh_2d.get_group(1), use_dist=True, coordinator_rank=0
)
# No exception should be raised.
dist_wrapper.barrier()
if __name__ == "__main__":
run_tests()
|