File: test_api.py

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (361 lines) | stat: -rw-r--r-- 14,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]

import torch
import torch.nn as nn
from torch.distributed.tensor import (
    DeviceMesh,
    distribute_module,
    distribute_tensor,
    DTensor,
    Replicate,
    Shard,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
    DTensorTestBase,
    with_comms,
)


class MyModel(nn.Module):
    def __init__(self, n_features, n_layers, device):
        super().__init__()
        self.seq = nn.Sequential(
            *[nn.Linear(n_features, n_features, device=device) for _ in range(n_layers)]
        )

    def forward(self, x):
        return self.seq(x)

    def reset_parameters(self):
        for m in self.seq:
            m.reset_parameters()


c10d_ops = torch.ops.c10d


class DTensorAPITest(DTensorTestBase):
    @property
    def world_size(self) -> int:
        # hard code world size to 4 as we need to test
        # at least with 2d mesh
        return 4

    @with_comms
    def test_distribute_tensor_rank(self):
        comm_mode = CommDebugMode()

        device_mesh = self.build_device_mesh()
        shard_spec = [Shard(0)]

        for requires_grad in [True, False]:
            tensor_to_shard = torch.randn(
                3 * self.world_size, 3, requires_grad=requires_grad
            )
            with comm_mode:
                dist_tensor = distribute_tensor(
                    tensor_to_shard, device_mesh, shard_spec
                )
                self.assertEqual(comm_mode.get_comm_counts()[c10d_ops.scatter_], 1)
            self.assertEqual(dist_tensor.size(), torch.Size([3 * self.world_size, 3]))
            local_tensor = dist_tensor.to_local()
            self.assertEqual(local_tensor.size(), torch.Size([3, 3]))
            if requires_grad:
                self.assertTrue(dist_tensor.requires_grad)
                self.assertTrue(dist_tensor.is_leaf)

        # test negative dim
        shard_minus_spec = [Shard(-1)]
        tensor_to_shard = torch.randn(3, 3 * self.world_size)
        dist_tensor = distribute_tensor(tensor_to_shard, device_mesh, shard_minus_spec)
        self.assertEqual(dist_tensor.placements[0].dim, 1)

        placement_combs = [[Shard(0)], [Shard(1)], [Replicate()]]
        # test src_data_rank == 1
        # set seed differently for each rank
        torch.manual_seed(self.rank)
        for placement in placement_combs:
            tensor_to_distribute = torch.randn(3 * self.world_size, 3 * self.world_size)
            dtensor = distribute_tensor(
                tensor_to_distribute, device_mesh, placement, src_data_rank=1
            )
            full_dtensor = dtensor.full_tensor()
            if self.rank == 1:
                self.assertEqual(full_dtensor, tensor_to_distribute)

        # test src_data_rank = None, make sure it does not have communication
        with comm_mode:
            for placement in placement_combs:
                if isinstance(placement[0], Shard):
                    shard_dim = placement[0].dim
                    shape = [3, 3]
                    shape[shard_dim] *= self.world_size
                    tensor_to_distribute = torch.randn(*shape)
                else:
                    tensor_to_distribute = torch.randn(3, 3)

                dtensor = distribute_tensor(
                    tensor_to_distribute, device_mesh, placement, src_data_rank=None
                )
                self.assertEqual(dtensor.to_local().shape, (3, 3))
        self.assertEqual(comm_mode.get_total_counts(), 0)

    @with_comms
    def test_distribute_tensor_errors(self):
        device_mesh = DeviceMesh(
            self.device_type, torch.arange(self.world_size).reshape(2, 2)
        )
        tensor_shape = [3 * self.world_size, 3 * self.world_size]
        tensor_to_distribute = torch.randn(*tensor_shape)

        with self.assertRaisesRegex(ValueError, "must have the same length"):
            shard_spec = [Shard(0)]
            distribute_tensor(tensor_to_distribute, device_mesh, shard_spec)

        with self.assertRaisesRegex(RuntimeError, "distribute leaf tensor"):
            shard_spec = [Shard(0)]
            global_tensor = torch.randn(*tensor_shape, requires_grad=True)
            global_tensor_to_distribute = global_tensor + 2
            distribute_tensor(global_tensor_to_distribute, device_mesh, shard_spec)

        spec = [Shard(0), Shard(1)]
        dtensor = distribute_tensor(tensor_to_distribute, device_mesh, spec)

        with self.assertRaisesRegex(ValueError, "to a different device mesh"):
            new_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
            distribute_tensor(dtensor, new_mesh, [Shard(0)])

        with self.assertRaisesRegex(ValueError, "to a different placements"):
            new_spec = [Shard(0), Replicate()]
            distribute_tensor(dtensor, device_mesh, new_spec)

    @with_comms
    def test_distribute_tensor_uneven_sharding(self):
        device_mesh = self.build_device_mesh()
        input_sizes_and_shard_dims = [
            ((self.world_size * 3 + 1, 3, 3), 0),
            ((self.world_size * 3 + 2, 3, 3), 0),
            ((3, self.world_size * 3 + 1, 3), 1),
            ((3, self.world_size * 3 + 2, 3), 1),
            ((3, 3, self.world_size * 3 + 1), 2),
            ((3, 3, self.world_size * 3 + 2), 2),
        ]
        for input_size, shard_dim in input_sizes_and_shard_dims:
            shard_spec = [Shard(shard_dim)]
            tensor_to_shard = torch.randn(input_size)
            splitted_tensor_list = list(
                torch.chunk(tensor_to_shard, self.world_size, dim=shard_dim)
            )
            dist_tensor = distribute_tensor(tensor_to_shard, device_mesh, shard_spec)
            self.assertEqual(dist_tensor.size(), torch.Size(input_size))
            local_tensor = dist_tensor.to_local()
            self.assertEqual(local_tensor, splitted_tensor_list[self.rank])

    @with_comms
    def test_distribute_module(self):
        device_mesh = self.build_device_mesh()
        # fully shard all linear modules on dim 0
        module_to_shard = MyModel(5 * self.world_size, 20, device=self.device_type)
        shard_spec = [Shard(0)]

        def shard_fn(name, module, device_mesh):
            if isinstance(module, nn.Linear):
                for name, param in module.named_parameters():
                    dist_param = torch.nn.Parameter(
                        distribute_tensor(param, device_mesh, shard_spec)
                    )
                    module.register_parameter(name, dist_param)

        sharded_module = distribute_module(module_to_shard, device_mesh, shard_fn)
        for param in sharded_module.parameters():
            self.assertIsInstance(param, DTensor)
            self.assertEqual(param.placements, shard_spec)

        replica_spec = [Replicate()]
        # fully replicate all modules without passing in partition_fn
        module_to_replicate = MyModel(5, 20, device=self.device_type)
        replica_module = distribute_module(module_to_replicate, device_mesh)
        for param in replica_module.parameters():
            self.assertIsInstance(param, DTensor)
            self.assertEqual(param.placements, replica_spec)

        # fully replicate all modules by passing in partition_fn
        def replicate_fn(name, module, device_mesh):
            if isinstance(module, nn.Linear):
                for name, param in module.named_parameters():
                    dist_param = torch.nn.Parameter(
                        distribute_tensor(param, device_mesh, replica_spec)
                    )
                    module.register_parameter(name, dist_param)

        module_to_replicate = MyModel(5, 20, device=self.device_type)
        replica_module = distribute_module(
            module_to_replicate, device_mesh, replicate_fn
        )
        for param in replica_module.parameters():
            self.assertIsInstance(param, DTensor)
            self.assertEqual(param.placements, replica_spec)

        # only shard part of module, and rest of module should be replicate
        def shard_fn(name, module, device_mesh):
            if isinstance(module, nn.Linear) and (name == "seq.0" or name == "seq.8"):
                for name, param in module.named_parameters():
                    dist_param = torch.nn.Parameter(
                        distribute_tensor(param, device_mesh, shard_spec)
                    )
                    module.register_parameter(name, dist_param)

        module_to_distribute = MyModel(5 * self.world_size, 20, device=self.device_type)
        dist_module = distribute_module(module_to_distribute, device_mesh, shard_fn)
        for name, param in dist_module.named_parameters():
            self.assertIsInstance(param, DTensor)
            if name.startswith(("seq.0", "seq.8")):
                self.assertEqual(param.placements, shard_spec)
            else:
                self.assertEqual(param.placements, replica_spec)

    @with_comms
    def test_distribute_module_input_fn_output_fn(self):
        device_mesh = self.build_device_mesh()

        # fully replicate all linear modules
        module_to_replicate = MyModel(20, 1, device=self.device_type)

        # mark input sharding on dim 0
        def input_fn(mod, inputs, device_mesh):
            return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])

        def output_fn(mod, outputs, device_mesh):
            assert isinstance(outputs, DTensor)
            return outputs.to_local()

        replica_module = distribute_module(
            module_to_replicate,
            device_mesh,
            input_fn=input_fn,
            output_fn=output_fn,
        )

        input_tensor = torch.randn(5, 20, device=self.device_type)
        local_out = replica_module(input_tensor)
        self.assertIsInstance(local_out, torch.Tensor)
        self.assertNotIsInstance(local_out, DTensor)

        # full replicate (even on inputs)
        model = MyModel(10, 10, device=self.device_type)

        def replicate_input_fn(mod, inputs, device_mesh):
            return DTensor.from_local(inputs[0], device_mesh, [Replicate()])

        replica_model = distribute_module(
            model,
            device_mesh,
            input_fn=replicate_input_fn,
        )
        input = torch.randn(10, 10, requires_grad=True)
        output = replica_model(input)
        output.sum().backward()
        param_grad = next(iter(replica_model.parameters())).grad
        self.assertTrue(isinstance(param_grad, DTensor))
        self.assertTrue(isinstance(param_grad.placements[0], Replicate))

    @with_comms
    def test_distribute_module_input_fn_output_fn_warning(self):
        device_mesh = self.build_device_mesh()

        # fully replicate all linear modules
        module_to_replicate = MyModel(20, 1, device=self.device_type)

        # mark input sharding on dim 0
        def input_fn(inputs, device_mesh):
            return DTensor.from_local(inputs[0], device_mesh, [Shard(0)])

        def output_fn(outputs, device_mesh):
            assert isinstance(outputs, DTensor)
            return outputs.to_local()

        with self.assertWarnsRegex(FutureWarning, "Deprecating"):
            replica_module = distribute_module(
                module_to_replicate,
                device_mesh,
                input_fn=input_fn,
                output_fn=output_fn,
            )

        input_tensor = torch.randn(5, 20, device=self.device_type)
        local_out = replica_module(input_tensor)
        self.assertIsInstance(local_out, torch.Tensor)
        self.assertNotIsInstance(local_out, DTensor)

    @with_comms
    def test_distribute_module_casting(self):
        device_mesh = self.build_device_mesh()

        # check DTensor casting
        dt = DTensor.from_local(torch.rand(10), device_mesh, [Replicate()])
        dt = dt.to(torch.bfloat16)
        self.assertEqual(dt.dtype, torch.bfloat16)
        self.assertEqual(dt._local_tensor.dtype, torch.bfloat16)

        # check distribute_tensor casting
        dt = distribute_tensor(torch.rand(10), device_mesh, [Replicate()])
        dt = dt.to(torch.bfloat16)
        self.assertEqual(dt.dtype, torch.bfloat16)
        self.assertEqual(dt._local_tensor.dtype, torch.bfloat16)

        # check distribute_module casting
        model = MyModel(10, 10, device=self.device_type)
        replica_model = distribute_module(
            model,
            device_mesh,
        )
        replica_model = replica_model.to(torch.bfloat16)
        self.assertEqual(replica_model.seq[0].weight.dtype, torch.bfloat16)
        self.assertEqual(
            replica_model.seq[0].weight._local_tensor.dtype, torch.bfloat16
        )

        # check autocast
        # `distribute_module` is an in-place operation, so we need to create a
        # new model
        model = MyModel(10, 10, device=self.device_type)
        dt = distribute_tensor(torch.rand(10), device_mesh, [Replicate()])
        replica_model = distribute_module(
            model,
            device_mesh,
        )
        with torch.autocast(device_type=self.device_type, dtype=torch.bfloat16):
            output = replica_model(dt)
        self.assertEqual(output.dtype, torch.bfloat16)

    @with_comms
    def test_distribute_module_meta(self):
        # If  the model is too big, the user may first the create entire model on the meta device and then initialize
        # it on the device in the partition function.
        device_mesh = self.build_device_mesh()

        # fully shard all parameters on dim 0
        module_to_shard = MyModel(5 * self.world_size, 20, device="meta")

        shard_spec = [Shard(0)]

        def shard_fn(name, module, device_mesh):
            for param_name, param in module._parameters.items():
                dist_param = distribute_tensor(param, device_mesh, shard_spec)
                dist_param = torch.empty_like(
                    dist_param, device=device_mesh.device_type
                )
                module.register_parameter(param_name, torch.nn.Parameter(dist_param))

        sharded_module = distribute_module(module_to_shard, device_mesh, shard_fn)
        for param in sharded_module.parameters():
            self.assertIsInstance(param, DTensor)
            self.assertFalse(param.is_meta)
            self.assertTrue(param.device.type == device_mesh.device_type)


if __name__ == "__main__":
    run_tests()