1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import copy
import itertools
from pprint import pformat
from typing import NamedTuple
import torch
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.tensor import (
DeviceMesh,
distribute_module,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.tensor._ops.utils import is_tensor_partial, normalize_dim
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
SequenceParallel,
)
from torch.testing._internal.common_utils import run_tests, skipIfRocm
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_unless_torch_gpu,
with_comms,
)
funcol = torch.ops.c10d_functional
class DistMathOpsTest(DTensorTestBase):
def _check_module(self, m1, m2, check_grad=False):
named_parameters = dict(m1.named_parameters())
for name, param_m2 in m2.named_parameters():
self.assertTrue(name in named_parameters)
param_m1 = named_parameters[name]
if check_grad:
param_m2 = param_m2.grad
param_m1 = param_m1.grad
if isinstance(param_m2, DTensor):
replicate = [Replicate()]
param_m2 = param_m2.redistribute(
device_mesh=param_m2.device_mesh, placements=replicate
).to_local()
self.assertEqual(param_m2, param_m1)
def linear_op_reductions(self, op_str):
device_mesh = self.build_device_mesh()
shard_spec = [Shard(0)]
tensor = torch.randn(12, 8, 8)
# TODO: check `all` correctness and test `all` on a bool tensor
if op_str in ("any"):
# test out a bool tensor for any
tensor = tensor < 0
dtensor = distribute_tensor(tensor, device_mesh, shard_spec)
op = getattr(tensor, op_str)
op_dt = getattr(dtensor, op_str)
keep_dim_or_not = [True, False, None]
for dim in range(tensor.ndim):
for keep_dim in keep_dim_or_not:
args = (dim, keep_dim) if keep_dim is not None else (dim,)
if op_str in ("max", "min"):
# min and max return a tuple when dim specified
dim_reduced_tensor, _ = op(*args)
dt_reduced, _ = op_dt(*args)
else:
dim_reduced_tensor = op(*args)
dt_reduced = op_dt(*args)
dt_dim_reduced_tensor = dt_reduced.full_tensor()
self.assertEqual(dt_dim_reduced_tensor, dim_reduced_tensor)
full_reduced_tensor = op()
dt_full_reduced = op_dt().full_tensor()
self.assertEqual(dt_full_reduced, full_reduced_tensor)
@with_comms
def test_linear_op_reductions(self):
for op_str in ("all", "sum", "prod", "max", "min", "any", "amax", "amin"):
self.linear_op_reductions(op_str)
@with_comms
@skip_unless_torch_gpu
def test_mean(self):
self.linear_op_reductions("mean")
# TODO: forward test can be removed once test_softmax_with_bwd passes on CPU
@with_comms
def test_softmax_fwd(self):
device_mesh = self.build_device_mesh()
x = torch.rand(8, 12, 16, device=self.device_type)
dims = range(3) # used to convert -1 to the actual dim
softmax_dims = [-1, 0, 1, 2]
shard_dims = [-1, 0, 1, 2]
test_list = list(itertools.product(softmax_dims, shard_dims))
for softmax_dim, shard_dim in test_list:
local_y = torch.nn.functional.softmax(
x, dim=softmax_dim, dtype=torch.float32
)
dist_x = distribute_tensor(x, device_mesh, [Shard(shard_dim)])
dist_y = torch.nn.functional.softmax(
dist_x, dim=softmax_dim, dtype=torch.float32
)
shard_dim = normalize_dim(shard_dim, dist_x.ndim)
if dims[shard_dim] == dims[softmax_dim]:
self.assertTrue(dist_y.placements[0].is_replicate())
self.assertEqual(dist_y.to_local(), local_y)
else:
self.assertTrue(dist_y.placements[0].is_shard(dim=shard_dim))
self.assertEqual(dist_y.full_tensor(), local_y)
# TODO: get test_softmax_with_bwd pass on CPU
# DTensor's _softmax_backward_data produces wrong result on CPU on certain dimension.
# fail_on_cpu_list = [(0, -1), (1, -1)]
@with_comms
@skip_unless_torch_gpu
def test_softmax_with_bwd(self):
device_mesh = self.build_device_mesh()
dims = range(3) # used to convert -1 to the actual dim
softmax_dims = [-1, 0, 1, 2]
shard_dims = [-1, 0, 1, 2]
test_list = list(itertools.product(softmax_dims, shard_dims))
for params in test_list:
softmax_dim, shard_dim = params
x = torch.rand(8, 12, 16, device=self.device_type, requires_grad=True)
self.assertTrue(x.requires_grad)
local_y = torch.nn.functional.softmax(
x, dim=softmax_dim, dtype=torch.float32
).sum()
local_y.backward()
dist_x = distribute_tensor(x, device_mesh, [Shard(shard_dim)])
self.assertTrue(dist_x.requires_grad)
dist_softmax = dist_x.softmax(dim=softmax_dim)
shard_dim = normalize_dim(shard_dim, dist_x.ndim)
if dims[softmax_dim] == dims[shard_dim]:
self.assertTrue(dist_softmax.placements[0].is_replicate())
else:
self.assertTrue(dist_softmax.placements[0].is_shard(dim=shard_dim))
dist_y = dist_softmax.sum()
if dims[softmax_dim] == dims[shard_dim]:
self.assertTrue(dist_y.placements[0].is_replicate())
else:
self.assertTrue(dist_y.placements[0].is_partial())
dist_y = dist_y.redistribute(device_mesh, [Replicate()])
self.assertEqual(dist_y.to_local(), local_y)
self.assertIsNone(dist_x.grad)
dist_y.backward()
self.assertIsNotNone(dist_x.grad)
if dims[softmax_dim] == dims[shard_dim]:
self.assertTrue(dist_x.grad.placements[0].is_replicate())
else:
self.assertTrue(dist_x.grad.placements[0].is_shard(dim=shard_dim))
self.assertEqual(dist_x.grad.full_tensor(), x.grad)
@with_comms
@skip_unless_torch_gpu
def test_nll_loss_and_cross_entropy(self):
device_mesh = self.build_device_mesh()
comm_mode = CommDebugMode()
channel_size, channel_dim = 16, 1
test_setup = [
(2, (8, channel_size), (8,)), # calling aten.nll_loss_forward
(3, (8, channel_size, 12), (8, 12)), # calling aten.nll_loss2d_forward
]
for input_ndim, input_size, target_size in test_setup:
x = torch.rand(*input_size, device=self.device_type, requires_grad=True)
target = torch.randint(channel_size, target_size, device=self.device_type)
dist_target = distribute_tensor(target, device_mesh, [Replicate()])
shard_dims = list(range(input_ndim))
reductions = ["none", "mean", "sum"]
# Compared with nll_loss, cross_entropy additionally calls log_softmax first.
# Testing them together as code can be reused.
loss_functions = [
torch.nn.functional.nll_loss,
torch.nn.functional.cross_entropy,
]
for shard_dim, reduction, loss_fn in itertools.product(
shard_dims, reductions, loss_functions
):
dist_x = distribute_tensor(x, device_mesh, [Shard(shard_dim)])
y = loss_fn(x, target, reduction=reduction)
if reduction == "none":
y.sum().backward()
else:
y.backward()
with comm_mode:
dist_y = loss_fn(dist_x, dist_target, reduction=reduction)
if shard_dim == channel_dim:
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertEqual(
comm_mode.get_comm_counts()[funcol.all_gather_into_tensor],
1,
)
self.assertTrue(dist_y.placements[0].is_replicate())
self.assertEqual(dist_y.to_local(), y)
else:
self.assertEqual(comm_mode.get_total_counts(), 0)
if reduction == "none":
output_shard_dim = (
shard_dim if shard_dim < channel_dim else shard_dim - 1
)
self.assertTrue(
dist_y.placements[0].is_shard(dim=output_shard_dim)
)
else:
self.assertTrue(dist_y.placements[0].is_partial())
self.assertEqual(dist_y.full_tensor(), y)
if reduction == "none":
dist_y.sum().backward()
else:
dist_y.backward()
if shard_dim == channel_dim:
self.assertTrue(dist_x.grad.placements[0].is_replicate())
self.assertEqual(dist_x.grad.to_local(), x.grad)
else:
self.assertTrue(
dist_x.grad.placements[0].is_shard(dim=shard_dim)
)
self.assertEqual(dist_x.grad.full_tensor(), x.grad)
x.grad.zero_()
@with_comms
def test_shard_math_ops(self):
mesh_shape = (2, self.world_size // 2)
mesh = DeviceMesh(
self.device_type,
torch.arange(self.world_size).reshape(*mesh_shape),
)
global_tensor = torch.ones(4, 4)
double_shard_tensor = distribute_tensor(
global_tensor, mesh, [Shard(0), Shard(0)]
)
fully_shard_tensor = distribute_tensor(
global_tensor, mesh, [Shard(0), Shard(1)]
)
# for op in [torch.add, torch.sub, torch.mul, torch.div]:
for op in [torch.add, torch.sub, torch.mul, torch.div]:
expect_rs = op(global_tensor, 2)
double_shard_full_tensor = op(double_shard_tensor, 2).full_tensor()
self.assertEqual(double_shard_full_tensor, expect_rs)
fully_shard_full_tensor = op(fully_shard_tensor, 2).full_tensor()
self.assertEqual(fully_shard_full_tensor, expect_rs)
@with_comms
def test_layer_norm_fwd(self):
device_mesh = self.build_device_mesh()
# NLP example from pytorch docs
# https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
batch, sentence_length, embedding_dim = 20, 5, 10
x = torch.rand(batch, sentence_length, embedding_dim, device=self.device_type)
norm_shape_idx_list = list(range(x.ndim))
shard_dims = [-1, 0, 1, 2]
elementwise_affine_list = [False, True]
# Test RMSNorm as well if CUDA
norm_types = [torch.nn.LayerNorm]
if self.device_type == "cuda" and hasattr(torch.nn, "RMSNorm"):
norm_types.append(torch.nn.RMSNorm)
test_config_list = list(
itertools.product(
norm_types, shard_dims, norm_shape_idx_list, elementwise_affine_list
)
)
# normalized shape is a torch.Size object
for norm_type, shard_dim, norm_idx, elementwise_affine in test_config_list:
normalized_shape = x.shape[norm_idx:]
layer_norm = norm_type(
normalized_shape,
elementwise_affine=elementwise_affine,
device=self.device_type,
)
layer_norm_local = copy.deepcopy(layer_norm).to(self.device_type)
def _replicate_fn(name, module, device_mesh):
for name, param in module.named_parameters():
# RMSNorm only has weight, LayerNorm has both weight and bias
if name in ["weight", "bias"]:
param_dist = torch.nn.Parameter(
distribute_tensor(param, device_mesh, [Replicate()])
)
module.register_parameter(name, param_dist)
layer_norm_dist = distribute_module(layer_norm, device_mesh, _replicate_fn)
x_local = x
x_dist = distribute_tensor(x, device_mesh, [Shard(shard_dim)])
y_local = layer_norm_local(x_local)
# make sure that forward layer norm does not introduce extra collectives
comm_mode = CommDebugMode()
with comm_mode:
y_dist = layer_norm_dist(x_dist)
self.assertLessEqual(
comm_mode.get_total_counts(),
1, # TODO: This should be 0!
f"comm count={comm_mode.get_total_counts()}, norm_type={norm_type.__name__}, "
f"shard_dim={shard_dim}, norm_shape={normalized_shape}, elem_affine={elementwise_affine}",
)
from torch.distributed.tensor._dtensor_spec import TensorMeta
dtensor_meta = y_dist._spec.tensor_meta
assert isinstance(dtensor_meta, TensorMeta)
# make sure the right shape in sharding prop
self.assertEqual(y_local.shape, dtensor_meta.shape)
self.assertEqual(y_local, y_dist.full_tensor())
@with_comms
def test_layer_norm_bwd(self):
device_mesh = self.build_device_mesh()
# NLP example from pytorch docs
# https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
batch, sentence_length, embedding_dim = 20, 5, 10
norm_shape_idx_list = list(range(3))
shard_dims = [0, 1, 2]
elementwise_affine_list = [False, True]
# Test both LayerNorm and RMSNorm (if CUDA)
norm_types = [torch.nn.LayerNorm]
if self.device_type == "cuda" and hasattr(torch.nn, "RMSNorm"):
norm_types.append(torch.nn.RMSNorm)
test_config_list = list(
itertools.product(
norm_types, shard_dims, norm_shape_idx_list, elementwise_affine_list
)
)
# normalized shape is a torch.Size object
for norm_type, shard_dim, norm_idx, elementwise_affine in test_config_list:
x = torch.rand(
batch,
sentence_length,
embedding_dim,
device=self.device_type,
requires_grad=True,
)
normalized_shape = x.shape[norm_idx:]
layer_norm = norm_type(
normalized_shape,
elementwise_affine=elementwise_affine,
device=self.device_type,
)
layer_norm_local = copy.deepcopy(layer_norm).to(self.device_type)
def _replicate_fn(name, module, device_mesh):
for name, param in module.named_parameters():
if name in ["weight", "bias"]:
param_dist = torch.nn.Parameter(
distribute_tensor(param, device_mesh, [Replicate()])
)
module.register_parameter(name, param_dist)
layer_norm_dist = distribute_module(layer_norm, device_mesh, _replicate_fn)
if elementwise_affine:
self.assertEqual(
layer_norm_local.weight, layer_norm_dist.weight.full_tensor()
)
# RMSNorm doesn't have bias
if hasattr(layer_norm_local, "bias"):
self.assertEqual(
layer_norm_local.bias, layer_norm_dist.bias.full_tensor()
)
x_local = x.detach().clone().requires_grad_(True)
x_dist = distribute_tensor(x, device_mesh, [Shard(shard_dim)])
self.assertEqual(x_local, x_dist.full_tensor())
y_local = layer_norm_local(x_local)
# make sure that backward layer norm does not introduce extra collectives
comm_mode = CommDebugMode()
with comm_mode:
y_dist = layer_norm_dist(x_dist)
y_dist.sum().backward()
expected_fwd_comm = 0 if shard_dim < norm_idx else 1
self.assertEqual(
sum(comm_mode.comm_module_counts["Global"]["forward"].values()),
expected_fwd_comm,
f"comm count={comm_mode.get_total_counts()}, norm_type={norm_type.__name__}, "
f"shard_dim={shard_dim}, norm_shape={normalized_shape}, elem_affine={elementwise_affine}",
)
self.assertEqual(y_local, y_dist.full_tensor())
# backward step
y_local.sum().backward()
expected_bwd_comm = 0 if shard_dim < norm_idx else 1
self.assertEqual(
sum(comm_mode.comm_module_counts["Global"]["backward"].values()),
expected_bwd_comm,
f"comm count={comm_mode.get_total_counts()}, norm_type={norm_type.__name__}, "
f"shard_dim={shard_dim}, norm_shape={normalized_shape}, elem_affine={elementwise_affine}",
)
if elementwise_affine:
# if input is sharded on any outer dimension, the gradient of weight
# and bias should be Partial
dim_map = x_dist._spec.dim_map
outer_dims = range(norm_idx)
needs_reduction = any(dim_map[d] >= 0 for d in outer_dims)
self.assertEqual(
is_tensor_partial(layer_norm_dist.weight.grad._spec),
needs_reduction,
)
# RMSNorm doesn't have bias
if hasattr(layer_norm_dist, "bias"):
self.assertEqual(
is_tensor_partial(layer_norm_dist.bias.grad._spec),
needs_reduction,
)
self.assertEqual(
layer_norm_local.weight.grad,
layer_norm_dist.weight.grad.full_tensor(),
)
# RMSNorm doesn't have bias
if hasattr(layer_norm_local, "bias"):
self.assertEqual(
layer_norm_local.bias.grad,
layer_norm_dist.bias.grad.full_tensor(),
)
self.assertEqual(x_local.grad, x_dist.grad.full_tensor())
@with_comms
def test_layer_norm_bwd_req_grad(self):
device_mesh = self.build_device_mesh()
batch, seq_len, embedding_dim, vocab_size = 8, 8, 10, 32
# Test both LayerNorm and RMSNorm (if CUDA)
norm_types = [torch.nn.LayerNorm]
if self.device_type == "cuda" and hasattr(torch.nn, "RMSNorm"):
norm_types.append(torch.nn.RMSNorm)
# build our subtest configurations and filter out invalid ones
class SubTest(NamedTuple):
norm_type: type
multidim_norm: bool
elementwise_affine: bool
emb_req_grad: bool
ln_req_grad: bool
out_req_grad: bool
subtest_fails = {}
valid_filter = ( # noqa: E731
lambda cfg: (
not (cfg.ln_req_grad and not cfg.elementwise_affine) and any(cfg[3:])
)
)
subtest_cfgs = list(
filter(
valid_filter,
[
SubTest(norm_type, *cfg)
for norm_type in norm_types
for cfg in itertools.product(*(((False, True),) * 5))
],
)
)
for subtest_cfg in subtest_cfgs:
try:
(
norm_type,
multidim_norm,
elementwise_affine,
emb_req_grad,
ln_req_grad,
out_req_grad,
) = subtest_cfg
normalized_shape = (
(seq_len, embedding_dim) if multidim_norm else (embedding_dim,)
)
# configure our local and parallelized models for this subtest
class LnTpBlock(torch.nn.Module):
def __init__(self):
super().__init__()
self.preln_embeddings = torch.nn.Embedding(
vocab_size, embedding_dim
)
self.layer_norm = norm_type(
normalized_shape, elementwise_affine=elementwise_affine
)
self.postln_linear = torch.nn.Linear(
embedding_dim, embedding_dim
)
def forward(self, tokens):
h = self.preln_embeddings(tokens)
h = self.layer_norm(h)
output = self.postln_linear(h)
return output
parallel_plan = {
"preln_embeddings": RowwiseParallel(
input_layouts=Replicate(), output_layouts=Shard(1)
),
"layer_norm": SequenceParallel(),
"postln_linear": ColwiseParallel(
input_layouts=Shard(1),
output_layouts=Replicate(),
),
}
model = LnTpBlock()
model_local = copy.deepcopy(model).to(device=self.device_type)
model_dist = parallelize_module(model, device_mesh, parallel_plan)
req_grad_map = {
"preln_embeddings": emb_req_grad,
"postln_linear": out_req_grad,
"layer_norm": ln_req_grad,
}
# apply the relevant `requires_grad` mask for this subtest to both models
for target_model in [model_local, model_dist]:
for n, p in target_model.named_parameters():
if not req_grad_map.get(n.rpartition(".")[0], False):
p.requires_grad_(False)
assert not p.requires_grad
else:
assert p.requires_grad
# forward step for both local and distributed models
x = torch.randint(vocab_size, (batch, seq_len), device=self.device_type)
x_local = x.detach().clone()
output_local = model_local(x_local)
with CommDebugMode() as comm_mode:
output_dist = model_dist(x)
self.assertEqual(output_local, output_dist)
# all requires_grad patterns should have the same forward comm counts
expected_fwd_comm = {
funcol.reduce_scatter_tensor: 1,
funcol.all_gather_into_tensor: 2,
}
self.assertDictEqual(
comm_mode.comm_module_counts["Global"]["forward"], expected_fwd_comm
)
# backward step
output_local.sum().backward()
with CommDebugMode() as comm_mode:
output_dist.sum().backward()
# ensure gradients (and parameters) remain equal between local and distributed models
self._check_module(model_local, model_dist, check_grad=True)
# different requires_grad patterns will have different bwd comm counts
if out_req_grad and not any((emb_req_grad, ln_req_grad)):
expected_bwd_comm = {}
elif ln_req_grad and not any((emb_req_grad, multidim_norm)):
expected_bwd_comm = {funcol.reduce_scatter_tensor: 1}
elif multidim_norm:
expected_bwd_comm = {funcol.all_reduce: 1}
expected_bwd_comm[funcol.all_gather_into_tensor] = (
2 if emb_req_grad else 1
)
else:
expected_bwd_comm = {
funcol.reduce_scatter_tensor: 1,
funcol.all_gather_into_tensor: 1,
}
self.assertDictEqual(
comm_mode.comm_module_counts["Global"]["backward"],
expected_bwd_comm,
)
self.assertEqual(output_local, output_dist)
except Exception as e:
subtest_fails[subtest_cfg] = e
# if any subtest fails, provide the failed subtests and report the overall failure
assert not subtest_fails, (
f"{len(subtest_fails)}/{len(subtest_cfgs)} subtests failed: {pformat(subtest_fails)}"
)
@with_comms
def test_topk(self):
device_mesh = self.build_device_mesh()
placement_combs = [Shard(0), Shard(1), Shard(2), Replicate()]
comm_mode = CommDebugMode()
tensor = torch.randn(12, 8, 8, requires_grad=True)
global_topk = tensor.topk(3, dim=0)
for placement in placement_combs:
dtensor = distribute_tensor(tensor, device_mesh, (placement,))
with comm_mode:
out_dt = dtensor.topk(3, dim=0)
if placement.is_shard(0):
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertEqual(
comm_mode.get_comm_counts()[funcol.all_gather_into_tensor],
1,
)
out_full_values = out_dt.values.full_tensor()
self.assertEqual(global_topk.values, out_full_values)
# TODO: support backward scatter
# global_topk.values.sum().backward()
# out_full_values.sum().backward()
@with_comms
def test_shard0_svd(self):
device_mesh = self.build_device_mesh()
torch.manual_seed(42)
replicated_x = torch.randn((8, 8), device=self.device_type)
sharded_x = distribute_tensor(replicated_x, device_mesh, (Shard(0),))
with CommDebugMode() as comm_mode:
U, S, V = torch.linalg.svd(sharded_x, full_matrices=False)
ref_U, ref_S, ref_V = torch.linalg.svd(replicated_x, full_matrices=False)
self.assertEqual(U.to_local(), ref_U)
self.assertEqual(S.to_local(), ref_S)
self.assertEqual(V.to_local(), ref_V)
comm_counts = comm_mode.get_comm_counts()
self.assertEqual(len(comm_counts), 1)
self.assertEqual(comm_counts[funcol.all_gather_into_tensor], 1)
@with_comms
def test_foreach_norm(self):
device_mesh = self.build_device_mesh()
grad0 = torch.randn(12, 8)
grad1 = torch.randn(8, 8)
sharded_grad0 = distribute_tensor(grad0, device_mesh, [Shard(0)])
sharded_grad1 = distribute_tensor(grad1, device_mesh, [Shard(0)])
# non-sharded op
out = torch.ops.aten._foreach_norm([grad0, grad1], 2)
# sharded op
sharded_out = torch.ops.aten._foreach_norm([sharded_grad0, sharded_grad1], 2)
for o, so in zip(out, sharded_out):
self.assertEqual(so.full_tensor(), o)
@with_comms
def test_foreach_norm_different_mesh(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("x", "y")
)
mesh_x = mesh_2d["x"]
mesh_y = mesh_2d["y"]
torch.manual_seed(0)
grad0 = torch.randn(12, 8)
grad1 = torch.randn(8, 8)
replica_grad0 = DTensor.from_local(grad0, mesh_x, [Replicate()])
replica_grad1 = DTensor.from_local(grad1, mesh_y, [Replicate()])
# could run sharded op without error
out_tuple = torch.ops.aten._foreach_norm([replica_grad0, replica_grad1], 2)
grad0_norm = out_tuple[0]
grad1_norm = out_tuple[1]
self.assertEqual(grad0_norm.device_mesh, mesh_x)
self.assertEqual(grad1_norm.device_mesh, mesh_y)
@with_comms
@skipIfRocm
def test_foreach_add_different_mesh(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("x", "y")
)
mesh_x = mesh_2d["x"]
mesh_y = mesh_2d["y"]
inp00 = torch.ones(4, 8) * 2
inp01 = torch.ones(8, 8) * 3
inp10 = torch.ones(4, 8) * 4
inp11 = torch.ones(8, 8) * 3
replica_inp00 = DTensor.from_local(inp00, mesh_x, [Shard(0)])
replica_inp01 = DTensor.from_local(inp01, mesh_x, [Replicate()])
replica_inp10 = DTensor.from_local(inp10, mesh_y, [Shard(0)])
replica_inp11 = DTensor.from_local(inp11, mesh_y, [Replicate()])
# zipped foreach, could run sharded op without error
out_tuple = torch.ops.aten._foreach_add(
[replica_inp00, replica_inp10], [replica_inp01, replica_inp11]
)
out0, out1 = out_tuple
self.assertEqual(out0.device_mesh, mesh_x)
self.assertEqual(out1.device_mesh, mesh_y)
with self.assertRaisesRegex(RuntimeError, "Sharding propagation failed"):
torch.ops.aten._foreach_add(
[replica_inp00, replica_inp01], [replica_inp10, replica_inp11]
)
@with_comms
def test_linalg_eigh(self):
A = torch.randn(2, 2, dtype=torch.float64)
mesh = self.build_device_mesh()
dtensor_A = distribute_tensor(A, device_mesh=mesh, placements=[Replicate()])
dtensor_A = dtensor_A + dtensor_A.mT
dtensor_L, dtensor_Q = torch.linalg.eigh(dtensor_A)
# TODO: we need to convert A, L, Q to local because we don't have a
# sharding strategy registered for aten.dist.default yet.
local_A, local_L, local_Q = (
dtensor_A.to_local(),
dtensor_L.to_local(),
dtensor_Q.to_local(),
)
distance = torch.dist(local_Q @ torch.diag(local_L) @ local_Q.mT, local_A)
self.assertEqual(distance.item(), 0.0)
@with_comms
def test_upsampling(self):
input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
mesh = self.build_device_mesh()
input_dtensor = distribute_tensor(
input, device_mesh=mesh, placements=[Shard(0)]
)
upsample_m = [
torch.nn.UpsamplingBilinear2d(scale_factor=2),
torch.nn.UpsamplingNearest2d(scale_factor=2),
torch.nn.Upsample(scale_factor=2, mode="bicubic"),
]
for m in upsample_m:
result = m(input)
dtensor_result = m(input_dtensor)
self.assertEqual(result, dtensor_result.full_tensor())
@with_comms
def test_cumsum(self):
mesh = self.build_device_mesh()
comm_mode = CommDebugMode()
inp = torch.rand(3, 5, device=self.device_type)
shard_dim = 0
input_dtensor = distribute_tensor(
inp, device_mesh=mesh, placements=[Shard(shard_dim)]
)
cumsum_dims = [0, 1]
for dim in cumsum_dims:
output = torch.cumsum(inp, dim=dim)
with comm_mode:
output_dtensor = torch.cumsum(input_dtensor, dim=dim)
if dim == shard_dim:
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertEqual(
comm_mode.get_comm_counts()[funcol.all_gather_into_tensor],
1,
)
self.assertTrue(output_dtensor.placements[0].is_replicate())
else:
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertTrue(output_dtensor.placements[0].is_shard(shard_dim))
self.assertEqual(output_dtensor.full_tensor(), output)
@with_comms
def test_conj_complex_dtensor(self):
mesh = self.build_device_mesh()
comm_mode = CommDebugMode()
freqs_cis = torch.randn(
1, 1, dtype=torch.complex64, requires_grad=False, device=self.device_type
)
freqs_cis_dt = distribute_tensor(
freqs_cis, device_mesh=mesh, placements=[Replicate()]
)
local_result = freqs_cis.conj() + 1
with comm_mode:
dtensor_result = freqs_cis_dt.conj() + 1
self.assertEqual(comm_mode.get_total_counts(), 0)
self.assertEqual(local_result, dtensor_result.full_tensor())
@with_comms
def test_rotary_embedding_complex_ops(self):
mesh = self.build_device_mesh()
comm_mode = CommDebugMode()
def apply_rotary_emb(xq, freqs_cis):
xq_ = torch.view_as_complex(xq)
xq_out = torch.view_as_real(xq_ * freqs_cis)
return xq_out
xq = torch.randn(1, 1, 2, requires_grad=True, device=self.device_type)
freqs_cis = torch.randn(
1, 1, dtype=torch.complex64, requires_grad=False, device=self.device_type
)
xq_dt = distribute_tensor(xq, device_mesh=mesh, placements=[Replicate()])
freqs_cis_dt = distribute_tensor(
freqs_cis, device_mesh=mesh, placements=[Replicate()]
)
with comm_mode:
xq_out_dt = apply_rotary_emb(xq_dt, freqs_cis_dt)
xq_out_dt.sum().backward()
self.assertEqual(comm_mode.get_total_counts(), 0)
dtensor_grad = xq_dt.grad.full_tensor()
xq.grad = None
xq_out = apply_rotary_emb(xq, freqs_cis)
xq_out.sum().backward()
self.assertEqual(dtensor_grad, xq.grad)
@with_comms
def test_histc(self):
# TODO - nicer to use parametrize here so its easy to run one sub-test by name,
# but its too slow (10sec per process-group init) -> switch to MultiProcessContinuousTest
device_mesh = self.build_device_mesh()
comm_mode = CommDebugMode()
tensor = torch.randn(12, 8, 8, requires_grad=True)
for min_max_specified in (True, False):
for placement in [Shard(0), Shard(1), Shard(2), Replicate()]:
min_ = tensor.min().item()
max_ = tensor.max().item()
global_bins = (
tensor.histc(min=min_, max=max_)
if min_max_specified
else tensor.histc()
)
dtensor = distribute_tensor(tensor, device_mesh, (placement,))
with comm_mode:
out_dt = (
dtensor.histc(min=min_, max=max_)
if min_max_specified
else dtensor.histc()
)
if placement.is_shard() and not min_max_specified:
self.assertEqual(comm_mode.get_total_counts(), 1)
self.assertEqual(
comm_mode.get_comm_counts()[funcol.all_gather_into_tensor], 1
)
else:
self.assertEqual(comm_mode.get_total_counts(), 0)
out_full = out_dt.full_tensor()
self.assertEqual(global_bins, out_full)
if __name__ == "__main__":
run_tests()
|