1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
|
# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import itertools
import torch
import torch.distributed._functional_collectives as funcol
import torch.distributed.tensor._random as random
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.distributed_c10d import broadcast_object_list
from torch.distributed.fsdp import fully_shard
from torch.distributed.tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
Replicate,
Shard,
)
from torch.distributed.tensor._random import (
is_rng_supported_mesh,
manual_seed,
OffsetBasedRNGTracker,
)
from torch.distributed.tensor._utils import compute_local_shape_and_global_offset
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.parallel import ColwiseParallel, parallelize_module
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
skip_if_lt_x_gpu,
skip_unless_torch_gpu,
with_comms,
)
def get_generator_seed_for_device_type(device_type: str) -> int:
device_module = torch.get_device_module(device_type)
return device_module.get_rng_state()[:8].view(torch.int64).item()
class DistTensorRandomInitTest(DTensorTestBase):
def _run_init_op(self, init_op, *args, **kwargs):
device_mesh = self.build_device_mesh()
shard_spec = [Shard(0)]
input_size = (8, 4)
# NOTE: currently random initialization on gpu device has different
# behavior from other devices. Unify the test once the behavior is unified.
if not is_rng_supported_mesh(device_mesh):
input_tensor = torch.randn(*input_size, device=self.device_type)
dtensor = DTensor.from_local(input_tensor, device_mesh, shard_spec)
local_tensor_clone = torch.clone(input_tensor)
torch.manual_seed(self.rank)
local_tensor_clone = init_op(local_tensor_clone, *args, **kwargs)
torch.manual_seed(self.rank)
dtensor = init_op(dtensor, *args, **kwargs)
self.assertEqual(local_tensor_clone, dtensor.to_local())
else:
# create DTensor from Tensor
_tensor = torch.empty(*input_size, device=self.device_type)
dtensor = distribute_tensor(_tensor, device_mesh, [Shard(1)])
# DTensor random init
dtensor = init_op(dtensor, *args, **kwargs)
local_tensor = dtensor.to_local()
# compare with local tensors from other ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
slice_idx = (
slice(input_size[0]),
slice(
other_rank * input_size[1], (other_rank + 1) * input_size[1]
),
)
# other rank should have a different local tensor
self.assertNotEqual(dtensor.full_tensor()[slice_idx], local_tensor)
@with_comms
def test_init_ops(self):
self._run_init_op(
torch.nn.init.kaiming_uniform_,
a=0,
mode="fan_in",
nonlinearity="leaky_relu",
)
self._run_init_op(torch.nn.init.normal_, mean=1.5, std=0.8)
self._run_init_op(torch.nn.init.uniform_, a=0, b=1.2)
for dtype in (torch.float32, torch.float16):
self._run_init_op(torch.rand_like, dtype=dtype)
self._run_init_op(torch.randn_like, dtype=dtype)
self._run_init_op(torch.randint_like, low=0, high=100, dtype=dtype)
@with_comms
@skip_if_lt_x_gpu(4)
def test_init_with_user_generator(self):
device_mesh = self.build_device_mesh()
torch.manual_seed(42)
rng = torch.Generator(device=self.device_type).manual_seed(42)
t1 = torch.distributed.tensor.empty(
(8, 3), device_mesh=device_mesh, placements=[Shard(0)]
)
t2 = torch.distributed.tensor.empty(
(8, 3), device_mesh=device_mesh, placements=[Shard(0)]
)
for i in range(2):
# run a second time, to make sure that `rng`'s offset-state is advancing on the second usage
torch.nn.init.uniform_(t1, 0.0, 1.0)
torch.nn.init.uniform_(t2, 0.0, 1.0, rng)
self.assertEqual(t1.full_tensor(), t2.full_tensor(), f"Failed at {i=}")
# ensure that we do not cache the 'seed' from the first time we see it in DTensor
# this is a behavior change, DTensor used to cache the generator state and not modify the original generator,
# now it modifies the original generator instead.
torch.manual_seed(55)
rng.manual_seed(55)
torch.nn.init.uniform_(t1, 0.0, 1.0)
torch.nn.init.uniform_(t2, 0.0, 1.0, rng)
self.assertEqual(t1.full_tensor(), t2.full_tensor())
@with_comms
@skip_if_lt_x_gpu(4)
def test_meta_tensor_init(self):
# test suite sets each rank's seed to the same value.
# The DTensor random ops will use the same generator as the default one on the device.
# Note: this behavior changed, and now the guideline is to set the same RNG seed on all SPMD ranks.
torch.get_device_module(self.device_type).manual_seed(0)
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
size = [1024, 2048]
meta_dtensor = distribute_tensor(
torch.empty(*size, device="meta"), device_mesh, [Replicate()]
)
# the tensor slice on the current rank
self_slice = slice(1024 * self.rank, 1024 * self.rank + 1024)
# Test 1: enable the distribute region for RNG (by default)
self.assertTrue(meta_dtensor.is_meta)
# Tensor meta init
dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
dtensor.uniform_()
# check `distribute_region_enabled` is set to True by default
self.assertTrue(random._rng_tracker.distribute_region_enabled)
# allgather the local tensors
gathered_local_tensors = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
for other_rank in range(self.world_size):
# the RNG result on each rank are the same because they're replicated
if self.rank != other_rank:
# other rank should have an identical local tensor
other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024)
self.assertEqual(
gathered_local_tensors[self_slice, :],
gathered_local_tensors[other_slice, :],
)
# Test 2: disable the distribute region for RNG
self.assertTrue(meta_dtensor.is_meta)
# Tensor meta init
dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
random._rng_tracker.distribute_region_enabled = False
dtensor.uniform_()
# check `distribute_region_enabled` is set to False
self.assertTrue(not random._rng_tracker.distribute_region_enabled)
# allgather the local tensors
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
for other_rank in range(self.world_size):
# the RNG result on each rank are the same even without the help of DTensor's RNG infra,
# since the default RNG is the same across ranks.
if self.rank != other_rank:
other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024)
self.assertEqual(
local_tensor[self_slice, :], local_tensor[other_slice, :]
)
@with_comms
@skip_unless_torch_gpu
def test_tp_model_meta_init(self):
# initialize the 1-d device mesh for TP
tp_mesh = init_device_mesh(self.device_type, mesh_shape=(self.world_size,))
# model meta init
with torch.device("meta"):
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
self.assertEqual(model.weight.device, torch.device("meta"))
parallelize_module(model, tp_mesh, ColwiseParallel())
if random._rng_tracker is not None:
random._rng_tracker.distribute_region_enabled = True
self.assertEqual(model.weight.device, torch.device("meta"))
# actual initialization
device = torch.device(
self.device_type, torch.get_device_module(self.device_type).current_device()
)
model.to_empty(device=device)
model.reset_parameters()
self.assertTrue(
random._rng_tracker is not None
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
)
self.assertEqual(model.weight.device, device)
assert isinstance(model.weight, DTensor)
# gather all the shards to compare initialization results
WORLD = torch.distributed.group.WORLD
assert WORLD is not None
weight_local = model.weight.to_local()
weight_gather = funcol.all_gather_tensor(
weight_local,
gather_dim=0,
group=WORLD,
)
# verify the weights are initialized differently on all ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
self.assertNotEqual(
weight_local,
weight_gather[other_rank : other_rank + 1, :],
)
@with_comms
@skip_if_lt_x_gpu(4)
def test_fsdp_tp_model_meta_init(self):
# initialize the 2-d device mesh
global_mesh = init_device_mesh(
self.device_type,
mesh_shape=(self.world_size // 2, 2),
mesh_dim_names=("dp", "tp"),
)
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
# model meta init
with torch.device("meta"):
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
self.assertEqual(model.weight.device, torch.device("meta"))
parallelize_module(model, tp_mesh, ColwiseParallel())
if random._rng_tracker is not None:
random._rng_tracker.distribute_region_enabled = True
fully_shard(model, mesh=dp_mesh)
self.assertEqual(model.weight.device, torch.device("meta"))
# actual initialization
device = torch.device(
self.device_type, torch.get_device_module(self.device_type).current_device()
)
model.to_empty(device=device)
model.reset_parameters()
self.assertTrue(
random._rng_tracker is not None
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
)
self.assertEqual(model.weight.device, device)
assert isinstance(model.weight, DTensor)
# gather all the shards to compare initialization results
WORLD = torch.distributed.group.WORLD
assert WORLD is not None
weight_local = model.weight.to_local()
weight_gather = funcol.all_gather_tensor(
weight_local,
gather_dim=0,
group=WORLD,
)
# verify the weights are initialized differently on all ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
self.assertNotEqual(
weight_local,
weight_gather[other_rank : other_rank + 1, :],
)
class DistTensorRandomOpTest(DTensorTestBase):
@with_comms
@skip_unless_torch_gpu
def test_rng_tracker_init(self):
torch.manual_seed(self.rank)
object_list = [torch.initial_seed()]
broadcast_object_list(object_list)
seed_from_rank_0 = int(object_list[0])
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# seed synchronization now does NOT happen after the first `distribute_tensor`
# call
dt = distribute_tensor(
torch.empty([self.world_size], device=self.device_type),
device_mesh,
[Shard(0)],
)
self.assertTrue(random._rng_tracker is None)
# seed synchronization only happens after `manual_seed` or the first DTensor
# random op call
dt.uniform_(0, 1)
# We do not maintain the copy of the seed in dtensor, but we do mutate the global rng state
# since we now always pull it fresh from the local device generator
self.assertEqual(
seed_from_rank_0, get_generator_seed_for_device_type(self.device_type)
)
@with_comms
@skip_unless_torch_gpu
def test_manual_seed(self):
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
# in the case of calling ``torch.distributed.tensor._random.manual_seed``,
# no seed synchronization should happen since we fully trust the users' input
# and will not override the value.
comm_mode = CommDebugMode()
with comm_mode:
# Test 1: set different seed on different ranks
# RNG tracker should not be initialized until DTensor ``manual_seed``
# is called.
self.assertTrue(random._rng_tracker is None)
manual_seed(self.rank, device_mesh)
# RNG tracker should already be initialized
self.assertTrue(random._rng_tracker is not None)
self.assertEqual(
self.rank, get_generator_seed_for_device_type(self.device_type)
)
# Test 2: set same seed on different ranks
manual_seed(1234, device_mesh)
self.assertEqual(1234, get_generator_seed_for_device_type(self.device_type))
self.assertEqual(comm_mode.get_total_counts(), 0)
@with_comms
@skip_unless_torch_gpu
def test_manual_seed_submesh(self):
# the current rank is not a part of the mesh
single_rank_device_mesh = DeviceMesh(
self.device_type, [(self.rank + 1) % self.world_size]
)
with self.assertRaisesRegex(
RuntimeError,
"manual_seed requires the current rank to be a part of the device mesh",
):
manual_seed(self.rank, single_rank_device_mesh)
@with_comms
@skip_unless_torch_gpu
def test_pipeline_parallel_manual_seed(self):
# This test is to verify the `manual_seed` API works as expected in the
# pipeline parallel setting.
world_mesh = init_device_mesh(
self.device_type,
(self.world_size // 2, 2),
mesh_dim_names=("pp", "spmd"),
)
pp_mesh = world_mesh["pp"]
pp_rank = pp_mesh.get_local_rank() # rank 0,1 = 0; rank 2,3 = 1
spmd_mesh = world_mesh["spmd"]
# set the seed for each pipeline stage to 123 + pp_rank
manual_seed(123 + pp_rank, spmd_mesh)
# dtensor no longer stores a copy of the seed, but it mutates the device's generator so we can check that
self.assertEqual(
123 + pp_rank, get_generator_seed_for_device_type(self.device_type)
)
# mimic initializing a model weight sharded on the SPMD mesh
spmd_dtensor = torch.distributed.tensor.ones(
2 * spmd_mesh.size(), 2, device_mesh=spmd_mesh, placements=[Shard(0)]
)
torch.nn.init.normal_(spmd_dtensor)
# gather all the shards to compare initialization results
WORLD = torch.distributed.group.WORLD
assert WORLD is not None
tensor_gather = funcol.all_gather_tensor(
spmd_dtensor.to_local(),
gather_dim=0,
group=WORLD,
)
# verify the weights are initialized differently on all ranks
for other_rank in range(self.world_size):
if self.rank != other_rank:
self.assertNotEqual(
spmd_dtensor.to_local(),
tensor_gather[2 * other_rank : 2 * (other_rank + 1), :],
)
@with_comms
@skip_unless_torch_gpu
def test_deterministic_dropout_1d(self):
# test suite sets each rank's seed to the same value but in actual
# execution the default random seed will be different (a random value).
# The DTensor random ops will use the same random seed even though the
# torch random generator keeps different seeds on ranks.
torch.manual_seed(self.rank)
# TODO: add test before/after enabling distribute region
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
size = [4, 4]
dtensor = distribute_tensor(
torch.empty(*size, device=self.device_type), device_mesh, [Shard(1)]
)
# a random op call shifts the offset
dtensor.uniform_(0, 1)
# the dtensor is now replicate on all ranks
dtensor = dtensor.redistribute(device_mesh, [Replicate()])
dropout = torch.nn.Dropout(p=0.2)
dtensor = dropout(dtensor)
# allgather the local tensors
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
for other_rank in range(self.world_size):
if self.rank != other_rank:
# other rank should have an identical local tensor
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
self.assertEqual(
local_tensor[self_slice, :],
local_tensor[other_slice, :],
)
@with_comms
@skip_unless_torch_gpu
def test_deterministic_rand_1d(self):
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
size = [4, 4 * self.world_size]
for fn in [
torch.distributed.tensor.rand,
torch.distributed.tensor.randn,
]:
dtensor = fn(size, device_mesh=device_mesh, placements=[Shard(1)])
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
for other_rank in range(self.world_size):
if self.rank != other_rank:
# other rank should have a different local tensor for shard placement
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
self.assertNotEqual(
local_tensor[self_slice, :],
local_tensor[other_slice, :],
)
# we should set manual seed to the same value on all SPMD ranks
torch.manual_seed(0)
dtensor = fn(size, device_mesh=device_mesh, placements=[Replicate()])
local_tensor = funcol.all_gather_tensor(
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
)
# compare with local tensors from other ranks
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
for other_rank in range(self.world_size):
if self.rank != other_rank:
# other rank should have an identical local tensor for replicate placement
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
self.assertEqual(
local_tensor[self_slice, :],
local_tensor[other_slice, :],
)
@with_comms
@skip_if_lt_x_gpu(4)
def test_deterministic_uniform_2d(self):
mesh = torch.arange(self.world_size).reshape(2, 2)
device_mesh = DeviceMesh(self.device_type, mesh)
dtensor = distribute_tensor(
torch.empty(
*[self.world_size for _ in mesh.size()], device=self.device_type
),
device_mesh,
[Replicate(), Replicate()],
)
placements_list = [ # this list of placements should be enough to cover
[Shard(0), Shard(1)],
[Shard(1), Shard(0)],
[Shard(0), Replicate()],
[Replicate(), Shard(0)],
[Shard(1), Replicate()],
[Replicate(), Shard(1)],
[Replicate(), Replicate()],
]
shard_index_list = [
{0: 0, 1: 1, 2: 2, 3: 3},
{0: 0, 1: 2, 2: 1, 3: 3},
{0: 0, 1: 0, 2: 1, 3: 1},
{0: 0, 1: 1, 2: 0, 3: 1},
{0: 0, 1: 0, 2: 1, 3: 1},
{0: 0, 1: 1, 2: 0, 3: 1},
{0: 0, 1: 0, 2: 0, 3: 0},
]
coordinate = device_mesh.get_coordinate()
assert coordinate is not None
for placements, shard_index in zip(placements_list, shard_index_list):
dtensor = dtensor.redistribute(device_mesh, placements)
# random op call
dtensor.uniform_(0, 1)
# check shard information is correct
shard_coord = [
coordinate[mesh_dim] if mesh_dim >= 0 else 0
for mesh_dim in dtensor._spec.dim_map
]
shard_size = [
device_mesh.size(mesh_dim) if mesh_dim >= 0 else 1
for mesh_dim in dtensor._spec.dim_map
]
shard_linear_idx = random._rng_tracker._calc_shard_linear_idx(
shard_coord, shard_size
)
self.assertEqual(shard_linear_idx, shard_index[self.rank])
# compute local size and offset
_, local_shard_offset = compute_local_shape_and_global_offset(
dtensor.shape, device_mesh, placements
)
# get the local shard size and local shard offset for each shard
# local_shard_list_on_dim[i] has the list of all shards on that dim
# as a tuple (local_shard_offset, local_shard_size)
dtensor_shape = dtensor.shape
local_shard_list_on_dim = [[(0, l)] for l in dtensor_shape]
for idx, placement in enumerate(placements):
if isinstance(placement, Shard):
mesh_dim_size = device_mesh.size(idx)
shard_dim = placement.dim
local_shard_list_on_dim[shard_dim] = []
for shard_idx_on_dim in range(mesh_dim_size):
(
shard_size,
shard_offset,
) = placement._local_shard_size_and_offset(
dtensor_shape[shard_dim],
mesh_dim_size,
shard_idx_on_dim,
)
local_shard_list_on_dim[shard_dim].append(
(shard_offset, shard_size)
)
local_shard_comb = itertools.product(*local_shard_list_on_dim)
# the local shard
local_tensor = dtensor.to_local()
# allgather the local tensors
full_tensor = dtensor.full_tensor()
# compare local tensor with each other shard
for other_local_shard in local_shard_comb:
other_local_shard_offset, _ = zip(*other_local_shard)
slice_idx = [
slice(offset, offset + size) for offset, size in other_local_shard
]
if local_shard_offset == other_local_shard_offset:
self.assertEqual(full_tensor[tuple(slice_idx)], local_tensor)
else:
self.assertNotEqual(full_tensor[tuple(slice_idx)], local_tensor)
class DistTensorRandomOpsTest3D(DTensorTestBase):
@property
def world_size(self):
return 8
@skip_if_lt_x_gpu(8)
@with_comms
def test_hsdp_tp_model_meta_init(self):
# initialize the 3-d device mesh
global_mesh = init_device_mesh(
self.device_type,
mesh_shape=(self.world_size // 4, 2, 2),
mesh_dim_names=("dp_replicate", "dp_shard", "tp"),
)
tp_mesh = global_mesh["tp"]
dp_mesh = global_mesh["dp_replicate", "dp_shard"]
# model meta init
with torch.device("meta"):
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
self.assertEqual(model.weight.device, torch.device("meta"))
parallelize_module(model, tp_mesh, ColwiseParallel())
if random._rng_tracker is not None:
random._rng_tracker.distribute_region_enabled = True
fully_shard(model, mesh=dp_mesh)
self.assertEqual(model.weight.device, torch.device("meta"))
# actual initialization
device = torch.device(
self.device_type, torch.get_device_module(self.device_type).current_device()
)
model.to_empty(device=device)
model.reset_parameters()
self.assertTrue(
random._rng_tracker is not None
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
)
self.assertEqual(model.weight.device, device)
assert isinstance(model.weight, DTensor)
# gather all the shards to compare initialization results
WORLD = torch.distributed.group.WORLD
assert WORLD is not None
weight_local = model.weight.to_local()
weight_gather = funcol.all_gather_tensor(
weight_local,
gather_dim=0,
group=WORLD,
)
# verify the weights are initialized differently on all ranks
shard_dim_0_len = self.world_size // 4
for other_rank in range(self.world_size):
other_rank_dim_0_start = other_rank * shard_dim_0_len
other_rank_dim_0_end = other_rank_dim_0_start + shard_dim_0_len
if self.rank % 4 != other_rank % 4:
self.assertNotEqual(
weight_local,
weight_gather[other_rank_dim_0_start:other_rank_dim_0_end, :],
)
else:
self.assertEqual(
weight_local,
weight_gather[other_rank_dim_0_start:other_rank_dim_0_end, :],
)
if __name__ == "__main__":
run_tests()
|