File: test_composability.py

package info (click to toggle)
pytorch 2.9.1%2Bdfsg-1~exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 180,096 kB
  • sloc: python: 1,473,255; cpp: 942,030; ansic: 79,796; asm: 7,754; javascript: 2,502; java: 1,962; sh: 1,809; makefile: 628; xml: 8
file content (382 lines) | stat: -rw-r--r-- 13,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Owner(s): ["oncall: distributed"]
import copy

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.pipelining import PipelineStage
from torch.distributed.pipelining.schedules import (
    PipelineScheduleSingle,
    Schedule1F1B,
    ScheduleGPipe,
    ScheduleInterleaved1F1B,
    ScheduleInterleavedZeroBubble,
    ScheduleLoopedBFS,
)
from torch.distributed.tensor import DTensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
    MultiProcContinuousTest,
    requires_nccl,
    skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    skip_but_pass_in_sandcastle_if,
    TEST_WITH_ROCM,
)


device_type = "cuda"


# MLP Layer
class MLPModule(torch.nn.Module):
    def __init__(self, d_hid: int):
        super().__init__()
        self.net1 = torch.nn.Linear(d_hid, d_hid)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(d_hid, d_hid)
        self.init_weights()

    def init_weights(self):
        # ensure a proper init otherwise gradient tests will be more likely to get zero grad values
        torch.nn.init.kaiming_uniform_(
            self.net1.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_uniform_(
            self.net2.weight, mode="fan_in", nonlinearity="relu"
        )

    def forward(self, x):
        x = self.net1(x)
        x = self.relu(x)
        x = self.net2(x)
        return x


class MLPModuleEven(torch.nn.Module):
    def __init__(self, d_hid: int):
        super().__init__()
        self.net1 = nn.Linear(d_hid, d_hid)
        self.net2 = nn.Linear(d_hid, d_hid)
        self.net3 = nn.Linear(d_hid, d_hid * 2)
        self.init_weights()

    def init_weights(self):
        torch.nn.init.kaiming_uniform_(
            self.net1.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_uniform_(
            self.net2.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_uniform_(
            self.net3.weight, mode="fan_in", nonlinearity="relu"
        )

    def forward(self, x):
        x = F.relu(self.net1(x))
        x = F.relu(self.net2(x))
        x = F.relu(self.net3(x))
        return x


def loss_fn(y, target, scale=1e-4):
    # Scale the loss to simulate a small learning rate and avoid exploding grads
    return torch.nn.functional.cross_entropy(y, target) * scale


class ComposabilityTest(MultiProcContinuousTest):
    @classmethod
    def backend_str(cls) -> str:
        # Testing with NCCL backend
        return "nccl"

    @property
    def device(self) -> torch.device:
        return torch.device(device_type, self.rank)

    def _rand_microbatches(self, dp_mesh, num_microbatches, dim, dtype=torch.float32):
        full = [
            torch.rand((num_microbatches, dim), device=self.device, dtype=dtype)
            for _ in range(dp_mesh.size())
        ]
        local = full[dp_mesh.get_local_rank()]
        local_mb = [[local[i].reshape((1, dim))] for i in range(num_microbatches)]
        return full, local, local_mb

    # build a pipeline stage
    def _build_pp_stage(
        self, pp_group, full_model, total_layers, apply_dp, stage_idx, num_stages
    ):
        # divide the model (e.g. 8 layers) by the number of stages
        layers_per_stage = total_layers // num_stages
        assert layers_per_stage * num_stages == total_layers
        # return offset so validation code can match partial layer back to orig model
        offset = stage_idx * layers_per_stage
        partial_model = nn.Sequential(
            *full_model[offset : (stage_idx + 1) * layers_per_stage]
        )
        partial_model.to(self.device)
        dp_model = apply_dp(partial_model)
        stage = PipelineStage(
            dp_model,
            stage_idx,
            num_stages,
            self.device,
            group=pp_group,
        )
        return stage, offset

    def _build_pp_schedule(
        self,
        ScheduleClass,
        num_microbatches,
        pp_group,
        full_model,
        total_layers,
        apply_dp,
        loss_fn,
    ):
        if issubclass(ScheduleClass, PipelineScheduleSingle):
            pipeline_stage, offset = self._build_pp_stage(
                pp_group,
                full_model,
                total_layers,
                apply_dp,
                pp_group.rank(),
                pp_group.size(),
            )

            partial_models = [pipeline_stage.submod]
            offsets = [offset]
            pipeline_schedule = ScheduleClass(
                pipeline_stage,
                n_microbatches=num_microbatches,
                loss_fn=loss_fn,
            )
        else:
            n_virtual = 2
            num_stages = pp_group.size() * n_virtual
            stages = []
            offsets = []
            for i in range(n_virtual):
                stage, offset = self._build_pp_stage(
                    pp_group,
                    full_model,
                    total_layers,
                    apply_dp,
                    pp_group.rank() + n_virtual * i,
                    num_stages,
                )
                stages.append(stage)
                offsets.append(offset)
            partial_models = [pipeline_stage.submod for pipeline_stage in stages]
            pipeline_schedule = ScheduleClass(
                stages,
                n_microbatches=num_microbatches,
                loss_fn=loss_fn,
            )
        return pipeline_schedule, partial_models, offsets

    @requires_nccl()
    @skip_if_lt_x_gpu(4)
    @skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "Test requires 4+ GPUs")
    @parametrize(
        "ScheduleClass",
        [
            ScheduleGPipe,
            ScheduleInterleaved1F1B,
            ScheduleInterleavedZeroBubble,
        ],
    )
    def test_pp_ddp(self, ScheduleClass):
        if ScheduleClass == ScheduleInterleavedZeroBubble:
            # TODO: DDP + InterleavedZeroBubble is not currently supported due to issue with DDP reducer not triggering
            # https://github.com/pytorch/pytorch/issues/144530
            return

        torch.get_device_module(device_type).set_device(self.device)
        mesh_shape = (self.world_size // 2, 2)
        mesh_dim_names = ("dp", "pp")
        device_mesh = init_device_mesh(
            "cuda", mesh_shape=mesh_shape, mesh_dim_names=mesh_dim_names
        )
        pp_group = device_mesh["pp"].get_group()
        dp_mesh = device_mesh["dp"]

        # create "entire model"
        total_layers = 8
        num_microbatches = 8
        dim = 10
        full_model = nn.ModuleList([MLPModule(dim) for _ in range(total_layers)])
        ref_model = nn.Sequential(*copy.deepcopy(full_model))
        ref_model.to(self.device)

        # Prepare inputs
        inputs, input_local, _ = self._rand_microbatches(dp_mesh, num_microbatches, dim)
        targets, target_local, _ = self._rand_microbatches(
            dp_mesh, num_microbatches, dim
        )

        def apply_dp(partial_model):
            return DDP(partial_model, process_group=dp_mesh.get_group())

        # Build pipeline stages, apply data parallelism and attach to a schedule
        pipeline_schedule, partial_models, offsets = self._build_pp_schedule(
            ScheduleClass,
            num_microbatches,
            pp_group,
            full_model,
            total_layers,
            apply_dp,
            loss_fn,
        )

        # Run the pipeline
        if pp_group.rank() == 0:
            pipeline_schedule.step(input_local)
        else:
            pipeline_schedule.step(target=target_local)

        # Ref model runs on 2 different inputs, accumulating grads across them.
        # this ensures that we detect if the DDP all-reduce becomes a no-op.
        for sim_dp_rank in range(dp_mesh.size()):
            loss_fn(ref_model(inputs[sim_dp_rank]), targets[sim_dp_rank]).backward()
        ref_model.to(torch.float32)
        for p in ref_model.parameters():
            p.grad = p.grad.to(torch.float32)
            p.grad /= dp_mesh.size()

        # Validate that whichever weights we have locally match that part of our local/full ref model
        ref_parameters = dict(ref_model.named_parameters())
        for partial_model, offset in zip(partial_models, offsets):
            for name, p in partial_model.named_parameters():
                parts = name.split(".")[
                    1:
                ]  # remove the DDP module. prefix (FSDP2 doesn't have one)
                parts[0] = str(int(parts[0]) + offset)
                name = ".".join(parts)
                ref_p = ref_parameters[name]
                torch.testing.assert_close(p.grad, ref_p.grad)

    @requires_nccl()
    @skip_if_lt_x_gpu(4)
    @skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "Test requires 4+ GPUs")
    @parametrize("dp_type", ["FSDP", "FSDP_MP"])
    @parametrize(
        "ScheduleClass",
        [
            Schedule1F1B,
            ScheduleInterleaved1F1B,
            ScheduleLoopedBFS,
            ScheduleInterleavedZeroBubble,
        ],
    )
    def test_pp_fsdp(self, dp_type, ScheduleClass):
        if TEST_WITH_ROCM:
            return

        torch.get_device_module(device_type).set_device(self.device)
        mesh_shape = (self.world_size // 2, 2)
        mesh_dim_names = ("dp", "pp")
        device_mesh = init_device_mesh(
            "cuda", mesh_shape=mesh_shape, mesh_dim_names=mesh_dim_names
        )
        pp_group = device_mesh["pp"].get_group()
        dp_mesh = device_mesh["dp"]

        # fsdp_mixed-precision dtype
        mp_dtype = torch.bfloat16 if dp_type == "FSDP_MP" else torch.float32

        # create "entire model"
        total_layers = 8
        num_microbatches = 8
        dim = 10
        full_model = nn.ModuleList([MLPModule(dim) for _ in range(total_layers)])
        ref_model = nn.Sequential(*copy.deepcopy(full_model))
        ref_model.to(self.device)
        if dp_type == "FSDP_MP":
            ref_model.to(dtype=mp_dtype)

        # Prepare inputs
        inputs, input_local, _ = self._rand_microbatches(
            dp_mesh, num_microbatches, dim, dtype=mp_dtype
        )
        targets, target_local, _ = self._rand_microbatches(
            dp_mesh, num_microbatches, dim, dtype=mp_dtype
        )

        # Apply FSDP to stage module
        def apply_dp(partial_model):
            mp_policy = MixedPrecisionPolicy(
                param_dtype=mp_dtype,
                reduce_dtype=torch.float32,
            )
            fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
            for layer in partial_model.children():
                fully_shard(
                    layer,
                    **fsdp_config,
                    reshard_after_forward=False,
                )
            return fully_shard(partial_model, **fsdp_config)

        # Build pipeline stages, apply data parallelism and attach to a schedule
        pipeline_schedule, partial_models, offsets = self._build_pp_schedule(
            ScheduleClass,
            num_microbatches,
            pp_group,
            full_model,
            total_layers,
            apply_dp,
            loss_fn,
        )

        # Run the pipeline
        if pp_group.rank() == 0:
            pipeline_schedule.step(input_local)
        else:
            pipeline_schedule.step(target=target_local)
        for m in partial_models:
            for p in m.parameters():
                assert p.grad is not None
                # introduce a race condition for FSDP's reduce-scatter which could corrupt gradients if pipelining
                # does not properly synchronize with FSDP
                p.grad.div_(2.0)
                p.grad.mul_(2.0)

        # Ref model runs on 2 different inputs, accumulating grads across them.
        # this ensures that we detect if the FSDP reduce becomes a no-op.
        # (in fsdp case, we use one of these inputs on each DP rank)
        for sim_dp_rank in range(dp_mesh.size()):
            loss_fn(ref_model(inputs[sim_dp_rank]), targets[sim_dp_rank]).backward()
        ref_model.to(torch.float32)
        for p in ref_model.parameters():
            p.grad = p.grad.to(torch.float32)
            p.grad /= dp_mesh.size()

        # Validate that whichever weights we have locally match that part of our local/full ref model
        # (we force FSDP's grads to be all-gathered (.full_tensor) to make it simpler)
        ref_parameters = dict(ref_model.named_parameters())
        for partial_model, offset in zip(partial_models, offsets):
            for name, p in partial_model.named_parameters():
                parts = name.split(".")
                parts[0] = str(int(parts[0]) + offset)
                name = ".".join(parts)
                ref_p = ref_parameters[name]
                self.assertTrue(isinstance(p.grad, DTensor))
                torch.testing.assert_close(
                    p.grad.full_tensor(), ref_p.grad, atol=5e-5, rtol=2e-2
                )


instantiate_parametrized_tests(ComposabilityTest)

if __name__ == "__main__":
    run_tests()