1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
# Owner(s): ["oncall: distributed"]
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import fully_shard, MixedPrecisionPolicy
from torch.distributed.pipelining import PipelineStage
from torch.distributed.pipelining.schedules import (
PipelineScheduleSingle,
Schedule1F1B,
ScheduleGPipe,
ScheduleInterleaved1F1B,
ScheduleInterleavedZeroBubble,
ScheduleLoopedBFS,
)
from torch.distributed.tensor import DTensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_distributed import (
MultiProcContinuousTest,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_ROCM,
)
device_type = "cuda"
# MLP Layer
class MLPModule(torch.nn.Module):
def __init__(self, d_hid: int):
super().__init__()
self.net1 = torch.nn.Linear(d_hid, d_hid)
self.relu = torch.nn.ReLU()
self.net2 = torch.nn.Linear(d_hid, d_hid)
self.init_weights()
def init_weights(self):
# ensure a proper init otherwise gradient tests will be more likely to get zero grad values
torch.nn.init.kaiming_uniform_(
self.net1.weight, mode="fan_in", nonlinearity="relu"
)
torch.nn.init.kaiming_uniform_(
self.net2.weight, mode="fan_in", nonlinearity="relu"
)
def forward(self, x):
x = self.net1(x)
x = self.relu(x)
x = self.net2(x)
return x
class MLPModuleEven(torch.nn.Module):
def __init__(self, d_hid: int):
super().__init__()
self.net1 = nn.Linear(d_hid, d_hid)
self.net2 = nn.Linear(d_hid, d_hid)
self.net3 = nn.Linear(d_hid, d_hid * 2)
self.init_weights()
def init_weights(self):
torch.nn.init.kaiming_uniform_(
self.net1.weight, mode="fan_in", nonlinearity="relu"
)
torch.nn.init.kaiming_uniform_(
self.net2.weight, mode="fan_in", nonlinearity="relu"
)
torch.nn.init.kaiming_uniform_(
self.net3.weight, mode="fan_in", nonlinearity="relu"
)
def forward(self, x):
x = F.relu(self.net1(x))
x = F.relu(self.net2(x))
x = F.relu(self.net3(x))
return x
def loss_fn(y, target, scale=1e-4):
# Scale the loss to simulate a small learning rate and avoid exploding grads
return torch.nn.functional.cross_entropy(y, target) * scale
class ComposabilityTest(MultiProcContinuousTest):
@classmethod
def backend_str(cls) -> str:
# Testing with NCCL backend
return "nccl"
@property
def device(self) -> torch.device:
return torch.device(device_type, self.rank)
def _rand_microbatches(self, dp_mesh, num_microbatches, dim, dtype=torch.float32):
full = [
torch.rand((num_microbatches, dim), device=self.device, dtype=dtype)
for _ in range(dp_mesh.size())
]
local = full[dp_mesh.get_local_rank()]
local_mb = [[local[i].reshape((1, dim))] for i in range(num_microbatches)]
return full, local, local_mb
# build a pipeline stage
def _build_pp_stage(
self, pp_group, full_model, total_layers, apply_dp, stage_idx, num_stages
):
# divide the model (e.g. 8 layers) by the number of stages
layers_per_stage = total_layers // num_stages
assert layers_per_stage * num_stages == total_layers
# return offset so validation code can match partial layer back to orig model
offset = stage_idx * layers_per_stage
partial_model = nn.Sequential(
*full_model[offset : (stage_idx + 1) * layers_per_stage]
)
partial_model.to(self.device)
dp_model = apply_dp(partial_model)
stage = PipelineStage(
dp_model,
stage_idx,
num_stages,
self.device,
group=pp_group,
)
return stage, offset
def _build_pp_schedule(
self,
ScheduleClass,
num_microbatches,
pp_group,
full_model,
total_layers,
apply_dp,
loss_fn,
):
if issubclass(ScheduleClass, PipelineScheduleSingle):
pipeline_stage, offset = self._build_pp_stage(
pp_group,
full_model,
total_layers,
apply_dp,
pp_group.rank(),
pp_group.size(),
)
partial_models = [pipeline_stage.submod]
offsets = [offset]
pipeline_schedule = ScheduleClass(
pipeline_stage,
n_microbatches=num_microbatches,
loss_fn=loss_fn,
)
else:
n_virtual = 2
num_stages = pp_group.size() * n_virtual
stages = []
offsets = []
for i in range(n_virtual):
stage, offset = self._build_pp_stage(
pp_group,
full_model,
total_layers,
apply_dp,
pp_group.rank() + n_virtual * i,
num_stages,
)
stages.append(stage)
offsets.append(offset)
partial_models = [pipeline_stage.submod for pipeline_stage in stages]
pipeline_schedule = ScheduleClass(
stages,
n_microbatches=num_microbatches,
loss_fn=loss_fn,
)
return pipeline_schedule, partial_models, offsets
@requires_nccl()
@skip_if_lt_x_gpu(4)
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "Test requires 4+ GPUs")
@parametrize(
"ScheduleClass",
[
ScheduleGPipe,
ScheduleInterleaved1F1B,
ScheduleInterleavedZeroBubble,
],
)
def test_pp_ddp(self, ScheduleClass):
if ScheduleClass == ScheduleInterleavedZeroBubble:
# TODO: DDP + InterleavedZeroBubble is not currently supported due to issue with DDP reducer not triggering
# https://github.com/pytorch/pytorch/issues/144530
return
torch.get_device_module(device_type).set_device(self.device)
mesh_shape = (self.world_size // 2, 2)
mesh_dim_names = ("dp", "pp")
device_mesh = init_device_mesh(
"cuda", mesh_shape=mesh_shape, mesh_dim_names=mesh_dim_names
)
pp_group = device_mesh["pp"].get_group()
dp_mesh = device_mesh["dp"]
# create "entire model"
total_layers = 8
num_microbatches = 8
dim = 10
full_model = nn.ModuleList([MLPModule(dim) for _ in range(total_layers)])
ref_model = nn.Sequential(*copy.deepcopy(full_model))
ref_model.to(self.device)
# Prepare inputs
inputs, input_local, _ = self._rand_microbatches(dp_mesh, num_microbatches, dim)
targets, target_local, _ = self._rand_microbatches(
dp_mesh, num_microbatches, dim
)
def apply_dp(partial_model):
return DDP(partial_model, process_group=dp_mesh.get_group())
# Build pipeline stages, apply data parallelism and attach to a schedule
pipeline_schedule, partial_models, offsets = self._build_pp_schedule(
ScheduleClass,
num_microbatches,
pp_group,
full_model,
total_layers,
apply_dp,
loss_fn,
)
# Run the pipeline
if pp_group.rank() == 0:
pipeline_schedule.step(input_local)
else:
pipeline_schedule.step(target=target_local)
# Ref model runs on 2 different inputs, accumulating grads across them.
# this ensures that we detect if the DDP all-reduce becomes a no-op.
for sim_dp_rank in range(dp_mesh.size()):
loss_fn(ref_model(inputs[sim_dp_rank]), targets[sim_dp_rank]).backward()
ref_model.to(torch.float32)
for p in ref_model.parameters():
p.grad = p.grad.to(torch.float32)
p.grad /= dp_mesh.size()
# Validate that whichever weights we have locally match that part of our local/full ref model
ref_parameters = dict(ref_model.named_parameters())
for partial_model, offset in zip(partial_models, offsets):
for name, p in partial_model.named_parameters():
parts = name.split(".")[
1:
] # remove the DDP module. prefix (FSDP2 doesn't have one)
parts[0] = str(int(parts[0]) + offset)
name = ".".join(parts)
ref_p = ref_parameters[name]
torch.testing.assert_close(p.grad, ref_p.grad)
@requires_nccl()
@skip_if_lt_x_gpu(4)
@skip_but_pass_in_sandcastle_if(not TEST_MULTIGPU, "Test requires 4+ GPUs")
@parametrize("dp_type", ["FSDP", "FSDP_MP"])
@parametrize(
"ScheduleClass",
[
Schedule1F1B,
ScheduleInterleaved1F1B,
ScheduleLoopedBFS,
ScheduleInterleavedZeroBubble,
],
)
def test_pp_fsdp(self, dp_type, ScheduleClass):
if TEST_WITH_ROCM:
return
torch.get_device_module(device_type).set_device(self.device)
mesh_shape = (self.world_size // 2, 2)
mesh_dim_names = ("dp", "pp")
device_mesh = init_device_mesh(
"cuda", mesh_shape=mesh_shape, mesh_dim_names=mesh_dim_names
)
pp_group = device_mesh["pp"].get_group()
dp_mesh = device_mesh["dp"]
# fsdp_mixed-precision dtype
mp_dtype = torch.bfloat16 if dp_type == "FSDP_MP" else torch.float32
# create "entire model"
total_layers = 8
num_microbatches = 8
dim = 10
full_model = nn.ModuleList([MLPModule(dim) for _ in range(total_layers)])
ref_model = nn.Sequential(*copy.deepcopy(full_model))
ref_model.to(self.device)
if dp_type == "FSDP_MP":
ref_model.to(dtype=mp_dtype)
# Prepare inputs
inputs, input_local, _ = self._rand_microbatches(
dp_mesh, num_microbatches, dim, dtype=mp_dtype
)
targets, target_local, _ = self._rand_microbatches(
dp_mesh, num_microbatches, dim, dtype=mp_dtype
)
# Apply FSDP to stage module
def apply_dp(partial_model):
mp_policy = MixedPrecisionPolicy(
param_dtype=mp_dtype,
reduce_dtype=torch.float32,
)
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
for layer in partial_model.children():
fully_shard(
layer,
**fsdp_config,
reshard_after_forward=False,
)
return fully_shard(partial_model, **fsdp_config)
# Build pipeline stages, apply data parallelism and attach to a schedule
pipeline_schedule, partial_models, offsets = self._build_pp_schedule(
ScheduleClass,
num_microbatches,
pp_group,
full_model,
total_layers,
apply_dp,
loss_fn,
)
# Run the pipeline
if pp_group.rank() == 0:
pipeline_schedule.step(input_local)
else:
pipeline_schedule.step(target=target_local)
for m in partial_models:
for p in m.parameters():
assert p.grad is not None
# introduce a race condition for FSDP's reduce-scatter which could corrupt gradients if pipelining
# does not properly synchronize with FSDP
p.grad.div_(2.0)
p.grad.mul_(2.0)
# Ref model runs on 2 different inputs, accumulating grads across them.
# this ensures that we detect if the FSDP reduce becomes a no-op.
# (in fsdp case, we use one of these inputs on each DP rank)
for sim_dp_rank in range(dp_mesh.size()):
loss_fn(ref_model(inputs[sim_dp_rank]), targets[sim_dp_rank]).backward()
ref_model.to(torch.float32)
for p in ref_model.parameters():
p.grad = p.grad.to(torch.float32)
p.grad /= dp_mesh.size()
# Validate that whichever weights we have locally match that part of our local/full ref model
# (we force FSDP's grads to be all-gathered (.full_tensor) to make it simpler)
ref_parameters = dict(ref_model.named_parameters())
for partial_model, offset in zip(partial_models, offsets):
for name, p in partial_model.named_parameters():
parts = name.split(".")
parts[0] = str(int(parts[0]) + offset)
name = ".".join(parts)
ref_p = ref_parameters[name]
self.assertTrue(isinstance(p.grad, DTensor))
torch.testing.assert_close(
p.grad.full_tensor(), ref_p.grad, atol=5e-5, rtol=2e-2
)
instantiate_parametrized_tests(ComposabilityTest)
if __name__ == "__main__":
run_tests()
|