1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
# Owner(s): ["oncall: quantization"]
import struct
import unittest
import torch
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
)
from torch.testing._internal.common_utils import (
DeterministicGuard,
IS_WINDOWS,
parametrize,
run_tests,
subtest,
TemporaryFileName,
TestCase,
)
FLOAT8_DTYPES = [
torch.float8_e5m2,
torch.float8_e5m2fnuz,
torch.float8_e4m3fn,
torch.float8_e4m3fnuz,
torch.float8_e8m0fnu,
]
CUDA_FLOAT8_DTYPES = [
torch.float8_e5m2,
torch.float8_e4m3fn,
torch.float8_e8m0fnu,
]
# The following information are not yet provided by torch.finfo.
MANTISSA_BITS = {
torch.float8_e5m2: 2,
torch.float8_e5m2fnuz: 2,
torch.float8_e4m3fn: 3,
torch.float8_e4m3fnuz: 3,
torch.float8_e8m0fnu: 0,
}
# As in np.finfo(dtype).minexp
MINEXP = {
torch.float8_e5m2: -14,
torch.float8_e5m2fnuz: -15,
torch.float8_e4m3fn: -6,
torch.float8_e4m3fnuz: -7,
torch.float8_e8m0fnu: -127,
}
SPECIAL_NUMBERS = {
torch.float8_e5m2: [
("01111100", float("inf"), "inf"),
("11111100", -1.0 * float("inf"), "neg_inf"),
("01111101", float("nan"), "nan"),
("11111101", float("nan"), "nan"),
("01111110", float("nan"), "nan"),
("11111110", float("nan"), "nan"),
("01111111", float("nan"), "nan"),
("11111111", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("10000000", -0.0, "neg_zero"),
("01111011", 57344.0, "max_normal"),
("11111011", -57344.0, "neg_max_normal"),
("00000100", 2**-14, "min_normal"),
("10000100", -1 * (2**-14), "neg_min_normal"),
("00000011", 0.75 * (2**-14), "max_subnorm"),
("10000011", -0.75 * (2**-14), "neg_max_subnorm"),
("00000001", 2**-16, "min_subnorm"),
("10000001", -1 * (2**-16), "neg_min_subnorm"),
],
torch.float8_e5m2fnuz: [
("10000000", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("00000000", -0.0, "neg_zero"),
("01111111", 57344.0, "max_normal"),
("11111111", -57344.0, "neg_max_normal"),
("00000100", 2**-15, "min_normal"),
("10000100", -1 * (2**-15), "neg_min_normal"),
("00000011", 0.75 * (2**-15), "max_subnorm"),
("10000011", -0.75 * (2**-15), "neg_max_subnorm"),
("00000001", 0.25 * (2**-15), "min_subnorm"),
("10000001", -0.25 * (2**-15), "neg_min_subnorm"),
],
torch.float8_e4m3fn: [
("01111111", float("nan"), "nan"),
("11111111", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("10000000", -0.0, "neg_zero"),
("01111110", 448.0, "max_normal"),
("11111110", -448.0, "neg_max_normal"),
("00001000", 2**-6, "min_normal"),
("10001000", -1 * (2**-6), "neg_min_normal"),
("00000111", 0.875 * (2**-6), "max_subnorm"),
("10000111", -0.875 * (2**-6), "neg_max_subnorm"),
("00000001", 2**-9, "min_subnorm"),
("10000001", -1 * (2**-9), "neg_min_subnorm"),
],
torch.float8_e4m3fnuz: [
("10000000", float("nan"), "nan"),
("00000000", 0.0, "zero"),
("00000000", -0.0, "neg_zero"),
("01111111", 240.0, "max_normal"),
("11111111", -240.0, "neg_max_normal"),
("00001000", 2**-7, "min_normal"),
("10001000", -1 * (2**-7), "neg_min_normal"),
("00000111", 0.875 * (2**-7), "max_subnorm"),
("10000111", -0.875 * (2**-7), "neg_max_subnorm"),
("00000001", 0.125 * (2**-7), "min_subnorm"),
("10000001", -0.125 * (2**-7), "neg_min_subnorm"),
],
torch.float8_e8m0fnu: [
("00000000", float(2**-127), "smallest_number"),
("11111110", float(2**127), "largest_number"),
("01111110", 0.5, "zero_point_five"),
("01111111", 1.0, "one"),
("10000000", 2.0, "two"),
("11111111", float("nan"), "nan"),
],
}
FLOAT8_DTYPES_WITH_INF = [torch.float8_e5m2]
def _int_bits_to_float(x):
y = struct.unpack("!f", struct.pack("!I", x))[0]
return y
def simulate_fp8_precision(input, variant):
"""Round input (as float32) to the given float8 datatype variant."""
# Constants
dtype = torch.float32
int_type = torch.int32
mbits = MANTISSA_BITS[variant]
minexp = MINEXP[variant] # ml_dtypes.finfo(variant).
input = input.to(dtype)
# Extract bitfield components
signs = torch.sign(input)
input_int = torch.abs(input).view(int_type)
exponent_bits = (input_int & 0x7F800000) >> 23
mantissa_bits = input_int & 0x007FFFFF
exponent_base = exponent_bits - 0x7F
# Add implicit leading 1 to mantissas, i.e. create 1.mmmmmmmm
f32_is_normal = exponent_bits != 0
mantissa_val_base = f32_is_normal * 0x00800000 + mantissa_bits
# Shift mantissa to match minimum exponent - denormals in the lower
# precision dtype remain normal in the higher precision dtype
denormal_bits = torch.maximum(
minexp - exponent_base, torch.tensor(0, dtype=int_type)
)
mantissa_val = mantissa_val_base >> denormal_bits
exponent = exponent_base + denormal_bits
# Round off mantissas
last_unrounded_bit = 1 << (23 - mbits)
rounding_mask = last_unrounded_bit - 1
mantissa_val_rounded = (mantissa_val + (rounding_mask >> 1)) & ~rounding_mask
# Round ties to nearest even
ties = (mantissa_val & rounding_mask) == (last_unrounded_bit >> 1)
is_odd = (mantissa_val_rounded & last_unrounded_bit) != 0
mantissa_val_rounded += (ties & is_odd) * last_unrounded_bit
# Re-compose mantissa and exponent
vals = (mantissa_val_rounded * 2.0 ** (-23 + exponent)).to(dtype)
# Replace overflows with inf/NaN as appropriate (no saturation)
have_inf = variant in FLOAT8_DTYPES_WITH_INF
vals[vals > torch.finfo(variant).max] = torch.inf if have_inf else torch.nan
return vals * signs
def _round_e8m0_rne(biased_exponent, lsb, g, r, s):
round_up = False
# apply g,r,s rounding rules for RNE rounding
if g == 1:
if (r == 1) or (s == 1):
round_up = True
else:
if lsb:
round_up = True
# round up if necessary
if round_up:
biased_exponent += 1
return biased_exponent
ROUND_TRIP_TEST_CASES = (
# A general 'soak test'.
subtest(
lambda dtype, device: torch.rand((100, 100), device=device)
* torch.finfo(dtype).max,
name="soak",
),
# A range below the smallest normal in the lower precision type, to ensure
# these are rounded correctly to their nearest subnormal in that type.
subtest(
lambda dtype, device: torch.rand(1000, device=device)
* 2
* torch.finfo(dtype).smallest_normal,
name="subnormals",
),
# A range of integers to exert rounding to nearest even.
subtest(
lambda dtype, device: torch.arange(
int(torch.finfo(dtype).max), dtype=torch.int, device=device
),
name="rte",
),
# Values around max.
subtest(
lambda dtype, device: torch.finfo(dtype).max
+ (torch.finfo(dtype).eps * torch.finfo(dtype).max)
* torch.arange(-3, 3, 0.25, device=device),
name="extremes",
),
)
class TestFloat8Dtype(TestCase):
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_creation_with_zeros(self, dtype, device):
"""Sanity test, round-trip casting of zeros."""
x8 = torch.zeros(8, dtype=dtype, device=device)
if dtype is torch.float8_e8m0fnu:
# zeros are not supported for this dtype, values get clamped
# to 2 ^ -127
x = torch.full((8,), 2**-127, dtype=torch.float, device=device)
self.assertEqual(x, x8.float(), atol=0, rtol=0)
else:
x = torch.zeros(8, dtype=torch.float, device=device)
self.assertEqual(x, x8.float(), atol=0, rtol=0)
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
@parametrize("get_input", ROUND_TRIP_TEST_CASES)
def test_cast_round_trip(self, dtype, get_input, device):
"""Numerical test of float8 conversion, by performing a round-trip cast
to the float8 dtype and back to float32, comparing against simulated
lower precision."""
if dtype is torch.float8_e8m0fnu:
return unittest.skip("numerics for e8m0fnu are tested elsewhere")
x = get_input(dtype, device)
x = torch.cat((x, -x))
x8 = x.to(dtype)
x8_simulated = simulate_fp8_precision(x, dtype)
self.assertEqual(x8_simulated, x8.float())
def test_float8_e8m0fnu_rne_rounding(self, device):
"""
For every possible e8m0 exponent (256 options) and for every possible
g, r, s bits of the float32 mantissa, verify that RNE rounding is
correctly applied when casting from float32 to e8m0
Note: this code is morally similar to `test_cast_round_trip`, but
IMO simpler to special case e8m0 here.
"""
for biased_exponent in range(0, 256):
# iterate through all the possible options of guard, round, sticky bits
# for the current exponent
for grs in range(8):
# create a positive floating point number with the specified exponent
# and mantissa guard, round, sticky bits
uint32_t_start = (biased_exponent << 23) + (grs << 20)
fp32_start = _int_bits_to_float(uint32_t_start)
# create an RNE rounded version of the exponent
if biased_exponent == 255:
new_biased_exponent = biased_exponent
else:
lsb = biased_exponent > 0
g = grs >> 2
r = (grs >> 1) & 0b1
s = grs & 0b1
new_biased_exponent = _round_e8m0_rne(biased_exponent, lsb, g, r, s)
# create an RNE rounded version of the float
fp32_e8m0_fp32_emulated = _int_bits_to_float(new_biased_exponent << 23)
# now, do the same in PyTorch and see if results match
fp32_pt_start = torch.full(
(1,), fp32_start, device=device, dtype=torch.float
)
fp32_pt_e8m0 = fp32_pt_start.to(torch.float8_e8m0fnu)
fp32_pt_e8m0_fp32 = fp32_pt_e8m0.to(torch.float)
expected = fp32_e8m0_fp32_emulated
if biased_exponent == 254 and grs >= 4:
# special case rounding up from the largest representable float32 exponent, which
# saturates to nan
expected = float("nan")
elif biased_exponent == 255:
# special case inf and nan, which becomes nan
expected = float("nan")
actual = fp32_pt_e8m0_fp32.item()
self.assertEqual(
expected, actual, f"expected: {expected}, actual: {actual}"
)
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_special_numbers(self, dtype, device):
"""Test special numbers."""
def compare_binary_with_decimal(binary, decimal, number_name, dtype, device):
bits_int = int(binary, 2)
tensor_int = torch.tensor([bits_int], dtype=torch.uint8, device=device)
tensor_fp8 = tensor_int.view(dtype)
if number_name == "nan":
assert tensor_fp8.isnan()
else:
tensor_fp32 = tensor_fp8.float()
ref_tensor_fp32 = torch.tensor(
[decimal], dtype=torch.float, device=device
)
self.assertEqual(tensor_fp32, ref_tensor_fp32, atol=0, rtol=0)
for number in SPECIAL_NUMBERS[dtype]:
compare_binary_with_decimal(*number, dtype, device)
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_type_promotion_fails(self, dtype, device):
"""Test that float8 is not promoted to higher precision Float Type."""
for other_dtype in [
torch.float16,
torch.bfloat16,
torch.float32,
torch.float64,
]:
x = torch.randn(8, device=device).to(dtype)
y = torch.randn(8, device=device).to(other_dtype)
with self.assertRaisesRegex(
RuntimeError, "Promotion for Float8 Types is not supported"
):
x + y
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_empty(self, dtype, device):
with DeterministicGuard(torch.are_deterministic_algorithms_enabled()):
for use_deterministic in (True, False):
torch.use_deterministic_algorithms(use_deterministic)
torch.empty(4, 4, device=device, dtype=dtype)
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_to_string(self, dtype, device):
x = torch.empty(4, 4, device=device, dtype=dtype)
str(x)
@dtypes(*FLOAT8_DTYPES)
def test_finfo(self, dtype, device):
torch.finfo(dtype)
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_cat(self, dtype, device):
x1 = torch.empty(4, 4, device=device, dtype=dtype)
x2 = torch.empty(4, 4, device=device, dtype=dtype)
torch.cat([x1, x2])
@dtypes(*FLOAT8_DTYPES)
@dtypesIfCUDA(*CUDA_FLOAT8_DTYPES)
def test_save_load(self, dtype, device):
x1 = torch.randint(0, 10, (4, 4), device=device, dtype=torch.uint8).view(dtype)
with TemporaryFileName() as fname:
torch.save(x1, fname)
x1_save_load = torch.load(fname)
torch.testing.assert_close(x1, x1_save_load, atol=0, rtol=0)
class TestFloat4Dtype(TestCase):
# TODO(#146647): make the testing generic for shell dtypes
def test_float4_e2m1fn_x2(self, device):
# can create a tensor of dtype float4
x1 = torch.empty(4096, 4096, device=device, dtype=torch.float4_e2m1fn_x2)
# can create a string (so printing will work)
str(x1)
# can view float4_e2m1fn_x2 as uint8
x2 = x1.view(torch.uint8)
# can view uint8 as float4_e2m1fn_x2
x2.view(torch.float4_e2m1fn_x2)
def test_f4_save_load(self, device):
x1 = torch.randint(0, 10, (4, 4), device=device, dtype=torch.uint8).view(
torch.float4_e2m1fn_x2
)
with TemporaryFileName() as fname:
torch.save(x1, fname)
x1_save_load = torch.load(fname)
# TODO(#146647): make this and all other shell dtypes support equality
# comparison
torch.testing.assert_close(
x1.view(torch.uint8), x1_save_load.view(torch.uint8), atol=0, rtol=0
)
instantiate_device_type_tests(TestFloat8Dtype, globals())
instantiate_device_type_tests(TestFloat4Dtype, globals())
class TestFloat8DtypeCPUOnly(TestCase):
"""
Test of mul implementation
NOTE: this is CPU-only for now because adding it to CUDA requires adding yet
another C++ dtype macro, and there is no use case yet for unscaled float8
multiplication - doesn't seem worth it.
"""
@dtypes(*CUDA_FLOAT8_DTYPES)
def test_mul(self, dtype):
# TODO(#113663): remove arithmetic support from all float8 dtypes
if dtype is torch.float8_e8m0fnu:
return unittest.skip("arithmetic not supported for torch.float8_e8m0fnu")
shape = (10, 10)
a = torch.randn(shape)
a8_simulated = simulate_fp8_precision(a, dtype)
a8 = a.to(dtype)
b = torch.randn(shape)
b8_simulated = simulate_fp8_precision(b, dtype)
b8 = b.to(dtype)
mul8 = a8 * b8
mul8_simulated = (a8_simulated * b8_simulated).to(dtype)
self.assertEqual(mul8, mul8_simulated)
@unittest.skipIf(IS_WINDOWS, "torch.compile not supported on Windows yet")
@dtypes(*CUDA_FLOAT8_DTYPES)
def test_pt2_traceable_aot_eager(self, dtype):
if dtype is torch.float8_e8m0fnu:
return unittest.skip(
"PT2 support for torch.float8_e8m0fnu is not implemented yet"
)
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x):
x = x.to(dtype)
x = x.float()
return x
x = torch.randn(1).requires_grad_()
f(x).sum().backward()
instantiate_device_type_tests(TestFloat8DtypeCPUOnly, globals(), only_for="cpu")
if __name__ == "__main__":
run_tests()
|