1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
# Owner(s): ["oncall: quantization"]
import copy
import unittest
import torch
import torch._dynamo as torchdynamo
from torch.ao.quantization.pt2e.graph_utils import (
find_sequential_partitions,
get_equivalent_types,
update_equivalent_types_dict,
)
from torch.testing._internal.common_utils import (
IS_WINDOWS,
raise_on_run_directly,
TestCase,
)
class TestGraphUtils(TestCase):
@unittest.skipIf(IS_WINDOWS, "torch.compile is not supported on Windows")
def test_conv_bn_conv_relu(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, 3)
self.bn1 = torch.nn.BatchNorm2d(3)
self.conv2 = torch.nn.Conv2d(3, 3, 3)
self.relu2 = torch.nn.ReLU()
def forward(self, x):
bn_out = self.bn1(self.conv1(x))
relu_out = torch.nn.functional.relu(bn_out)
return self.relu2(self.conv2(relu_out))
m = M().eval()
example_inputs = (torch.randn(1, 3, 5, 5),)
# program capture
m, guards = torchdynamo.export( # noqa: F841
m,
*copy.deepcopy(example_inputs),
aten_graph=True,
)
fused_partitions = find_sequential_partitions(
m, [torch.nn.Conv2d, torch.nn.BatchNorm2d]
)
self.assertEqual(len(fused_partitions), 1)
fused_partitions = find_sequential_partitions(
m, [torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU]
)
self.assertEqual(len(fused_partitions), 1)
def x():
find_sequential_partitions(
m,
[
torch.nn.Conv2d,
torch.nn.BatchNorm2d,
torch.nn.ReLU,
torch.nn.functional.conv2d,
],
)
self.assertRaises(ValueError, x)
@unittest.skipIf(IS_WINDOWS, "torch.compile is not supported on Windows")
def test_conv_bn_relu(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.bn1 = torch.nn.BatchNorm2d(3)
self.conv2 = torch.nn.Conv2d(3, 3, 3)
self.relu2 = torch.nn.ReLU()
def forward(self, x):
bn_out = self.bn1(x)
return self.relu2(self.conv2(bn_out))
m = M().eval()
example_inputs = (torch.randn(1, 3, 5, 5),)
# program capture
m, guards = torchdynamo.export( # noqa: F841
m,
*copy.deepcopy(example_inputs),
aten_graph=True,
)
fused_partitions = find_sequential_partitions(
m, [torch.nn.Conv2d, torch.nn.BatchNorm2d]
)
self.assertEqual(len(fused_partitions), 0)
fused_partitions = find_sequential_partitions(
m, [torch.nn.BatchNorm2d, torch.nn.Conv2d]
)
self.assertEqual(len(fused_partitions), 1)
fused_partitions = find_sequential_partitions(
m, [torch.nn.BatchNorm2d, torch.nn.ReLU]
)
self.assertEqual(len(fused_partitions), 0)
@unittest.skipIf(IS_WINDOWS, "torch.compile is not supported on Windows")
def test_customized_equivalet_types_dict(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)
def forward(self, x):
return torch.nn.functional.relu6(self.conv(x))
m = M().eval()
example_inputs = (torch.randn(1, 3, 5, 5),)
# program capture
m, guards = torchdynamo.export( # noqa: F841
m,
*copy.deepcopy(example_inputs),
aten_graph=True,
)
customized_equivalent_types = get_equivalent_types()
customized_equivalent_types.append({torch.nn.ReLU6, torch.nn.functional.relu6})
update_equivalent_types_dict(customized_equivalent_types)
fused_partitions = find_sequential_partitions(
m,
[torch.nn.Conv2d, torch.nn.ReLU6],
)
self.assertEqual(len(fused_partitions), 1)
if __name__ == "__main__":
raise_on_run_directly("test/test_quantization.py")
|