File: index.rst

package info (click to toggle)
pyvo 1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,964 kB
  • sloc: python: 16,778; xml: 9,417; makefile: 113
file content (965 lines) | stat: -rw-r--r-- 34,355 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
.. _pyvo-data-access:

************************
Data Access (`pyvo.dal`)
************************

This subpackage provides access to the various data services in the VO.

Getting started
===============

Service objects are created with the service url and provide service-specific
metadata.

.. doctest-remote-data::

    >>> import pyvo as vo
    >>> service = vo.dal.SIAService("http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml")
    >>> print(service.description)
    Scans of plates kept at Landessternwarte Heidelberg-Königstuhl. They
    were obtained at location, at the German-Spanish Astronomical Center
    (Calar Alto Observatory), Spain, and at La Silla, Chile. The plates
    cover a time span between 1880 and 1999.
    <BLANKLINE>
    Specifically, HDAP is essentially complete for the plates taken with
    the Bruce telescope, the Walz reflector, and Wolf's Doppelastrograph
    at both the original location in Heidelberg and its later home on
    Königstuhl.

They provide a ``search`` method with varying standard parameters for
submitting queries.

.. doctest-skip::

    >>> resultset = service.search(pos=pos, size=size)

which returns a :ref:`resultset <pyvo-resultsets>`.

Individual services may define additional, custom parameters.  You can pass
these to the ``search`` method as (case-insensitive) keyword arguments.

Call the method ``describe`` to print human-readable service metadata. You most
likely want to use this in a notebook session or similar before actually
querying the service.

See :ref:`pyvo-services` for a explanation of the different interfaces.

.. _pyvo-astro-params:

Astrometric parameters
----------------------

Most services expose the astrometric parameters ``pos`` and ``size`` for which
PyVO accept `~astropy.coordinates.SkyCoord` or `~astropy.units.Quantity`
objects as well as any other sequence containing right ascension and declination
in degrees, which are converted to the standard coordinate frame
(in the VO, that usually is ICRS) in the standard units (always degrees
in the VO) before they are submitted to the service.

Also, `~astropy.coordinates.SkyCoord` can be used to lookup names of
astronomical objects you are searching for.

.. doctest-remote-data::

    >>> import pyvo as vo
    >>> from astropy.coordinates import SkyCoord
    >>> from astropy.units import Quantity
    >>>
    >>> pos = SkyCoord.from_name('NGC 4993')
    >>> size = Quantity(0.5, unit="deg")

See :ref:`astropy-coordinates` and :ref:`astropy-units` for details.

The `~astropy.units.Quantity` object is also suitable for any other
astrometric parameter, such as waveband ranges.

Some services also accept `~astropy.time.Time` as ``time`` parameter.

.. doctest::

    >>> from astropy.time import Time
    >>> time = Time(('2015-01-01T00:00:00', '2018-01-01T00:00:00'),
    ...             format='isot', scale='utc')

See :ref:`astropy-time` for explanation.

.. _pyvo-verbosity:

Verbosity
---------

Several VO protocols have the notion of “verbosity”, where 1 means “minimal
set of columns”, 2 means “columns most users can work with” and 3 ”everything
including exotic items”.  Query functions accept these values in the
``verbosity`` parameter. The exact semantics are service-specific.

Capabilities
------------

VO services should offer some standard ”support” interfaces specified in
VOSI.  In pyVO, the information obtained from these endpoints can be
obtained from some service attributes.

Capabilities describe specific pieces of functionality (such as “this is a
spectral search”) and further metadata (such as ”this service will never
return more than 10000 rows”).

This information is contained in the data structure
:py:class:`~pyvo.io.vosi.endpoint.CapabilitiesFile` available through
the ``pyvo.dal.vosi.CapabilityMixin.capabilities`` attribute.

Exceptions
----------
See the ``pyvo.dal.exceptions`` module.

.. _pyvo-services:

Services
========

There are five types of services with different purposes but a mostly
similar interface available.

.. _pyvo_tap:

Table Access Protocol
---------------------

.. pull-quote::

    This protocol defines a service protocol for accessing
    general table data, including astronomical catalogs as well as general
    database tables. Access is provided for both database and table metadata
    as well as for actual table data. This protocol supports the query language
    `Astronomical Data Query Language (ADQL) <https://www.ivoa.net/documents/ADQL/>`_
    within an integrated interface.
    It also includes support for both synchronous and asynchronous queries.
    Special support is provided for spatially indexed queries using the
    spatial extensions in ADQL. A multi-position query capability permits
    queries against an arbitrarily large list of astronomical targets,
    providing a simple spatial cross-matching capability.
    More sophisticated distributed cross-matching capabilities are possible by
    orchestrating a distributed query across multiple TAP services.

    -- `Table Access Protocol <https://www.ivoa.net/documents/TAP/>`_


Consider the following example for using TAP and ADQL, retrieving 5
objects from the GAIA DR3 database, showing their id, position and
mean G-band magnitude between 19 - 20:

.. doctest-remote-data::

    >>> import pyvo as vo
    >>> tap_service = vo.dal.TAPService("http://dc.g-vo.org/tap")
    >>> ex_query = """
    ...     SELECT TOP 5
    ...     source_id, ra, dec, phot_g_mean_mag
    ...     FROM gaia.dr3lite
    ...     WHERE phot_g_mean_mag BETWEEN 19 AND 20
    ...     ORDER BY phot_g_mean_mag
    ...     """
    >>> result = tap_service.search(ex_query)
    >>> print(result)
    <DALResultsTable length=5>
        source_id              ra                dec         phot_g_mean_mag
                            deg                deg               mag
        int64             float64            float64           float32
    ------------------- ------------------ ------------------ ---------------
    2162809607452221440 315.96596187101636 45.945474015208106            19.0
    2000273643933171456  337.1829026565382   50.7218533537033            19.0
    2171530448339798784  323.9151025188806  51.27690705826792            19.0
    2171810342771336704 323.25913736080776  51.94305655940998            19.0
    2180349528028140800  310.5233961869657   50.3486391034819            19.0

While DALResultsTable has some convenience functions, is is often
convenient to directly obtain a proper astropy Table using the
``to_table`` method:

.. doctest-remote-data::

    >>> result.to_table().columns[:3]
    <TableColumns names=('source_id','ra','dec')>


To explore more query examples, you can try either the ``description``
attribute for some services. For other services like this one, try
the ``examples`` attribute.

.. doctest-remote-data::

    >>> print(tap_service.examples[1]['QUERY'])
    SELECT TOP 50 l.id, l.pmra as lpmra, l.pmde as lpmde,
    g.source_id, g.pmra as gpmra, g.pmdec as gpmde
    FROM
    lspm.main as l
    JOIN gaia.dr3lite AS g
    ON (DISTANCE(g.ra, g.dec, l.raj2000, l.dej2000)<0.01) -- rough pre-selection
    WHERE
    DISTANCE(
        ivo_epoch_prop_pos(
        g.ra, g.dec, g.parallax,
        g.pmra, g.pmdec, g.radial_velocity,
        2016, 2000),
        POINT(l.raj2000, l.dej2000)
    )<0.0002                            -- fine selection with PMs

TAPServices let you do extensive metadata inspection.  For instance,
to see the tables available on the Simbad TAP service, say:

.. doctest-remote-data::

    >>> simbad = vo.dal.TAPService("http://simbad.cds.unistra.fr/simbad/sim-tap")
    >>> print([tab_name for tab_name in simbad.tables.keys()])  # doctest: +IGNORE_WARNINGS
    ['TAP_SCHEMA.schemas', 'TAP_SCHEMA.tables', ... 'otypedef', 'otypes', 'ref']


If you know a TAP service's access URL, you can directly pass it to
:py:class:`~pyvo.dal.TAPService` to obtain a service object.
Sometimes, such URLs are published in papers or passed around through
other channels. Most commonly, you will discover them in the VO
registry (cf. :ref:`pyvo.registry<pyvo-registry>`).

To perform a query using ADQL, the ``search()`` method is used.
TAPService instances have several methods to inspect the metadata
of the service - in particular, what tables with what columns are
available - discussed below.

To get an idea of how to write queries in ADQL, have a look at
`GAVO's ADQL course`_; it is basically a standardised subset of SQL
with some extensions to make it work better for astronomy.

.. _GAVO's ADQL course: https://docs.g-vo.org/adql

Synchronous vs. asynchronous query
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In synchronous (“sync”) mode, the client keeps a connection for the
entire runtime of the query, and query processing generally starts
when the request is submitted.  This is convenient but becomes
brittle as queries have runtimes of the order of minutes, when you
may encounter query timeouts.  Also, many data providers impose
rather strict limits on the runtime allotted to sync queries.

In asynchronous (“async”) mode, on the other hand, the client just
submits a query and receives a URL that let us inspect the
execution status (and retrieve its result) later.  This means that
no connection needs to be held, which makes this mode a lot more
robust of long-running queries.  It also supports queuing queries,
which allows service operators to be a lot more generous with
resource limits.

To specify the query mode, you can use either ``run_sync()`` for
synchronous query or ``run_async()`` for asynchronous query.

.. doctest-remote-data::

    >>> job = tap_service.submit_job(ex_query)

To learn more details from the asynchronous query, let's look at the
``submit_job()`` method. This submits an asynchronous query without
starting it, it creates a new object :py:class:`~pyvo.dal.AsyncTAPJob`.

.. doctest-remote-data::

    >>> job.url
    'http://dc.g-vo.org/__system__/tap/run/async/...'

The job URL mentioned before is available in the ``url`` attribute.
Clicking on the URL leads you to the query itself, where you can check
the status(phase) of the query and decide to run, modify or delete
the job. You can also do it via various attributes:

.. doctest-remote-data::

    >>> job.phase
    'PENDING'

A newly created job is in the PENDING state.
While it is pending, it can be configured, for instance, overriding
the server's default time limit (after which the query will be
canceled):

.. doctest-remote-data::

    >>> job.executionduration = 700
    >>> job.executionduration
    700

When you are ready, you can start the job:

.. doctest-remote-data::

    >>> job.run()
    <pyvo.dal.tap.AsyncTAPJob object at 0x...>

This will put the job into the QUEUED state.  Depending on how busy
the server is, it will immediately go to the EXECUTING status:

.. doctest-remote-data::

    >>> job.phase  # doctest: +IGNORE_OUTPUT
    'EXECUTING'

The job will eventually end up in one of the phases:

* COMPLETED - if all went to plan,
* ERROR -   if the query failed for some reason;
            look at the error
            attribute of the job to find out details,
* ABORTED - if you manually killed the query using the ``abort()``
            method or the server killed your query, presumably because it hit
            the time limit.

After the job ends up in COMPLETED, you can retrieve the result:

.. doctest-remote-data::

    >>> job.phase  # doctest: +IGNORE_OUTPUT
    'COMPLETED'
    >>> job.fetch_result()  # doctest: +SKIP
    (result table as shown before)

Eventually, it is friendly to clean up the job rather than relying
on the server to clean it up once ``job.destruction`` (a datetime
that you can change if you need to) is reached.

.. doctest-remote-data::

    >>> job.delete()

For more attributes please read the description for the job object
:py:class:`~pyvo.dal.AsyncTAPJob`.

With ``run_async()`` you basically submit an asynchronous query and
return its result. It is like running ``submit_job()`` first and then
run the query manually.

Query limit
^^^^^^^^^^^

As a sanity precaution, most services have some default limit of how many
rows they will return before overflowing:

.. doctest-remote-data::

    >>> print(tap_service.maxrec)
    20000

To retrieve more rows than that (often conservative) default limit, you
must override maxrec in the call to ``search``. PyVO will only warn about 
truncation when it's unexpected. If you request 5 records and get 5 records,
no warning is issued:

.. doctest-remote-data::

    >>> tap_results = tap_service.search("SELECT * FROM arihip.main", maxrec=5)
    >>> len(tap_results)
    5

However, if results are truncated by server limits without you specifying 
maxrec, you'll receive a helpful warning:

.. doctest-remote-data::

    >>> tap_results = tap_service.search("SELECT * FROM arihip.main")  # doctest: +SHOW_WARNINGS
    DALOverflowWarning: Results truncated due to server limits. Consider setting a maxrec value.

Services will not let you raise maxrec beyond the hard match limit:

.. doctest-remote-data::

    >>> print(tap_service.hardlimit)
    16000000

A list of the tables and the columns within them is available in the
TAPService's :py:attr:`~pyvo.dal.TAPService.tables` attribute by using it as an
iterator or calling it's ``describe()`` method for a human-readable summary.


Uploads
^^^^^^^

Some TAP services allow you to upload your own tables to make them accessible
in queries.

For this the various query methods have a ``uploads`` keyword, which accepts a
dictionary of table name and content.

The mechanism behind this parameter is smart enough to distinct between various
types of content, either a :py:class:`~str` pointing to a local file or a
file-like object, a :py:class:`~astropy.table.Table` or
:py:class:`~pyvo.dal.query.DALResults` for an inline upload,
or a url :py:class:`~str` pointing to a remote resource.

The uploaded tables will be available as ``TAP_UPLOAD.name``.

.. note::
  The supported upload methods are available under
  :py:meth:`~pyvo.dal.tap.TAPService.upload_methods`.

.. _table manipulation:

Table Manipulation
^^^^^^^^^^^^^^^^^^

.. note::
    This is a prototype implementation and the interface might not be stable.
    More details about the feature at: :ref:`cadc-tb-upload`

Some services allow users to create, modify and delete tables. Typically, these
functionality is only available to authenticated (and authorized) users.

.. Requires proper credentials and authorization
.. doctest-skip::

    >>> auth_session = vo.auth.AuthSession()
    >>> # authenticate. For ex: auth_session.credentials.set_client_certificate('<cert_file>')
    >>> tap_service = vo.dal.TAPService("https://ws-cadc.canfar.net/youcat", session=auth_session)
    >>>
    >>> table_definition = '''
    ... <vosi:table xmlns:vosi="http://www.ivoa.net/xml/VOSITables/v1.0" xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type="output">
    ...     <name>my_table</name>
    ...     <description>This is my very own table</description>
    ...     <column>
    ...         <name>article</name>
    ...         <description>some article</description>
    ...         <dataType xsi:type="vod:VOTableType" arraysize="30*">char</dataType>
    ...     </column>
    ...     <column>
    ...         <name>count</name>
    ...         <description>how many</description>
    ...         <dataType xsi:type="vod:VOTableType">long</dataType>
    ...     </column>
    ... </vosi:table> '''
    >>> tap_service.create_table(name='test_schema.test_table', definition=StringIO(table_definition))

Table content can be loaded from a file or from memory. Supported data formats:
tab-separated values (tsv), comma-separated values (cvs) or VOTable (VOTable):

.. doctest-skip::

    >>> tap_service.load_table(name='test_schema.test_table',
    ...                        source=StringIO('article,count\narticle1,10\narticle2,20\n'), format='csv')

Users can also create indexes on single columns:
.. doctest-skip::

    >>> tap_service.create_index(table_name='test_schema.test_table', column_name='article', unique=True)

Finally, tables and their content can be removed:

.. doctest-skip::

    >>> tap_service.remove_table(name='test_schema.test_table')

For further information about the service's parameters, see :py:class:`~pyvo.dal.TAPService`.

.. _pyvo-sia:

Simple Image Access
-------------------

.. pull-quote::

    The Simple Image Access (SIA) protocol
    provides capabilities for the discovery, description, access, and retrieval
    of multi-dimensional image datasets, including 2-D images as well as datacubes
    of three or more dimensions. SIA data discovery is based on the
    `ObsCore Data Model <https://www.ivoa.net/documents/ObsCore/>`_,
    which primarily describes data products by the physical axes (spatial, spectral,
    time, and polarization). Image datasets with dimension greater than 2 are often
    referred to as datacubes, cube or image cube datasets and may be considered examples
    of hypercube or n-cube data. PyVO supports both versions of SIA.

    -- `Simple Image Access <https://www.ivoa.net/documents/SIA/>`_

Basic queries are done with the ``pos`` and ``size`` parameters described in
:ref:`pyvo-astro-params`, with ``size`` being the rectangular region around
``pos``.

.. doctest-remote-data::

    >>> pos = SkyCoord.from_name('Eta Carina')
    >>> size = Quantity(0.5, unit="deg")
    >>> sia_service = vo.dal.SIAService("http://dc.g-vo.org/hppunion/q/im/siap.xml")
    >>> sia_results = sia_service.search(pos=pos, size=size)

The dataset format, 'all' by default, can be specified:

.. doctest-remote-data::

    >>> sia_results = sia_service.search(pos=pos, size=size, format='graphics')

This would return all graphical image formats (png, jpeg, gif) available. Other
possible values are image/* mimetypes, or ``metadata``, which returns no image
at all but instead a declaration of the additional parameters supported
by the given service.

The ``intersect`` argument (defaulting to ``OVERLAPS``) lets a program
specify the desired relationship between the region of interest and the
coverage of the images (case-insensitively):

.. doctest-remote-data::

    >>> sia_results = sia_service.search(pos=pos, size=size, intersect='covers')

Available values:
    ========= ======================================================
    COVERS    select images that completely cover the search region
    ENCLOSED  select images that are complete enclosed by the region
    OVERLAPS  select any image that overlaps with the search region
    CENTER    select images whose center is within the search region
    ========= ======================================================

This service exposes the :ref:`verbosity <pyvo-verbosity>` parameter

For further information about the service's parameters, see :py:class:`~pyvo.dal.SIAService`.

.. _pyvo-ssa:

Simple Spectrum Access
----------------------

.. pull-quote::

    The Simple Spectral Access (SSA) Protocol (SSAP)
    defines a uniform interface to remotely discover and access one
    dimensional spectra.

    -- `Simple Spectral Access Protocol <https://www.ivoa.net/documents/SSA/>`_

Access to (one-dimensional) spectra resembles image access, with some
subtile differences:

The size parameter is called ``diameter`` here, and hence the search
region is always circular with ``pos`` as center:

.. doctest-remote-data::

    >>> ssa_service = vo.dal.SSAService("http://archive.stsci.edu/ssap/search2.php?id=BEFS&")
    >>> ssa_results = ssa_service.search(pos=pos, diameter=size)
    >>> ssa_results[0].getdataurl()
    'http://archive.stsci.edu/pub/vospectra/...'

SSA queries can be further constrained by the ``band`` and ``time`` parameters.

.. doctest-remote-data::

    >>> ssa_results = ssa_service.search(
    ...     pos=pos, diameter=size,
    ...     time=Time((53000, 54000), format='mjd'), band=Quantity((1e-13, 1e-12), unit="m"))

For further information about the service's parameters, see :py:class:`~pyvo.dal.SSAService`.

.. _pyvo-scs:

Simple Cone Search
------------------

.. pull-quote::

    The Simple Cone Search (SCS)
    API specification defines a simple query protocol for retrieving records from
    a catalog of astronomical sources. The query describes sky position and
    an angular distance, defining a cone on the sky. The response returns
    a list of astronomical sources from the catalog whose positions
    lie within the cone, formatted as a VOTable.

    -- `Simple Cone Search <https://www.ivoa.net/documents/latest/ConeSearch.html>`_

The Simple Cone Search returns results – typically catalog entries –
within a circular region on the sky defined by the parameters ``pos``
(again, ICRS) and ``radius``:

.. doctest-remote-data::

    >>> scs_srv = vo.dal.SCSService('http://dc.g-vo.org/arihip/q/cone/scs.xml')
    >>> scs_results = scs_srv.search(pos=pos, radius=size)

This service exposes the :ref:`verbosity <pyvo-verbosity>` parameter.
For further information about the service's parameters, see :py:class:`~pyvo.dal.SCSService`.

.. _pyvo-slap:

Simple Line Access
------------------

.. pull-quote::

    The Simple Line Access Protocol (SLAP)
    is an IVOA data access protocol which defines a protocol for retrieving
    spectral lines coming from various Spectral Line Data Collections through
    a uniform interface within the VO framework.

    -- `Simple Line Access Protocol <https://www.ivoa.net/documents/SLAP/>`_

This service let you query for spectral lines in a certain ``wavelength``
range. The unit of the values is meters, but any unit may be specified using
`~astropy.units.Quantity`.
For further information about the service's parameters, see :py:class:`~pyvo.dal.SLAService`.

Jobs
====
Some services, most notably TAP ones, allow asynchronous operation
(i.e., you submit a job, receive a URL where to check for updates, and
then can go away) using a VO standard called UWS.

These have a ``submit_job`` method, which has the same
parameters as their ``search`` but start a server-side job instead of waiting
for the result to return.

This is particularly useful for longer-running queries or when you want
to run several queries in parallel from one script.

.. note::
    It is good practice to test the query with a maxrec constraint first.

When you invoke ``submit_job`` you will get a job object.

.. doctest-remote-data::

    >>> async_srv = vo.dal.TAPService("http://dc.g-vo.org/tap")
    >>> job = async_srv.submit_job("SELECT * FROM ivoa.obscore")

.. note::
    Currently, only `pyvo.dal.tap.TAPService` supports server-side jobs.

This job is not yet running yet. To start it invoke ``run``

.. doctest-remote-data::

    >>> job.run()  # doctest: +IGNORE_OUTPUT

Get the current job phase:

.. doctest-remote-data::

    >>> print(job.phase)  # doctest: +IGNORE_OUTPUT
    EXECUTING

Maximum run time in seconds is available and can be changed with
:py:attr:`~pyvo.dal.AsyncTAPJob.execution_duration`

.. doctest-remote-data::

    >>> print(job.execution_duration)
    7200.0
    >>> job.execution_duration = 3600

Obtaining the job url, which is needed to reconstruct the job at a later point:

.. doctest-remote-data::

    >>> job_url = job.url
    >>> job = vo.dal.tap.AsyncTAPJob(job_url)

Besides ``run`` there are also several other job control methods:

* :py:meth:`~pyvo.dal.AsyncTAPJob.abort`
* :py:meth:`~pyvo.dal.AsyncTAPJob.delete`
* :py:meth:`~pyvo.dal.AsyncTAPJob.wait`

.. note::
    Usually the service deletes the job after a certain time, but it is a good
    practice to delete it manually when done.

    The destruction time can be obtained and changed with
    :py:attr:`~pyvo.dal.AsyncTAPJob.destruction`

Also, :py:class:`pyvo.dal.AsyncTAPJob` works as a context manager which
takes care of this automatically:

.. doctest-remote-data::

    >>> with async_srv.submit_job("SELECT * FROM ivoa.obscore") as job1:
    ...     job1.run()  # doctest: +IGNORE_OUTPUT
    >>> print('job1 deleted!')
    job1 deleted!

Check for errors in the job execution:

.. doctest-remote-data::

    >>> job.raise_if_error()

If the execution was successful, the resultset can be obtained using
:py:meth:`~pyvo.dal.AsyncTAPJob.fetch_result`

The result url is available under :py:attr:`~pyvo.dal.AsyncTAPJob.result_uri`

.. _pyvo-resultsets:

Resultsets and Records
======================
Resultsets contain primarily tabular data and might also provide binary
datasets and/or access to additional data services.

To obtain the names of the columns in a service response, write:

.. doctest-remote-data::

    >>> tap_service = vo.dal.TAPService("http://dc.g-vo.org/tap")
    >>> resultset = tap_service.search("SELECT * FROM ivoa.obscore"
    ... " WHERE obs_collection='CALIFA' AND"
    ... " 1=CONTAINS(s_region, CIRCLE(23, 42, 5))"
    ... " ORDER BY obs_publisher_did")
    >>> print(resultset.fieldnames)
    ('dataproduct_type', 'dataproduct_subtype', 'calib_level',
    'obs_collection', 'obs_id', 'obs_title', 'obs_publisher_did',
    'obs_creator_did', 'access_url', 'access_format', 'access_estsize',
    'target_name', 'target_class', 's_ra', 's_dec', 's_fov', 's_region',
    's_resolution', 't_min', 't_max', 't_exptime', 't_resolution', 'em_min',
    'em_max', 'em_res_power', 'o_ucd', 'pol_states', 'facility_name',
    'instrument_name', 's_xel1', 's_xel2', 't_xel', 'em_xel', 'pol_xel',
    's_pixel_scale', 'em_ucd', 'preview', 'source_table')


Rich metadata equivalent to what is found in VOTables (including unit,
ucd, utype, and xtype) is available through resultset's
:py:meth:`~pyvo.dal.query.DALResults.getdesc` method:

.. doctest-remote-data::

    >>> print(resultset.getdesc('s_fov').ucd)
    phys.angSize;instr.fov

.. note::
    Two convenience functions let you retrieve columns of a specific
    physics (by UCD) or with a particular legacy data model annotation
    (by utype), like this:

.. doctest-remote-data::

    >>> fieldname = resultset.fieldname_with_ucd('phys.angSize;instr.fov')
    >>> fieldname = resultset.fieldname_with_utype('obscore:access.reference')

Iterating over a resultset gives the rows in the result:

.. doctest-remote-data::

    >>> for row in resultset:
    ...     print(row['s_fov'])
    0.01
    0.01
    0.01
    0.01
    0.01
    0.01
    0.01
    0.01
    0.01

The total number of rows in the answer is available as its ``len()``:

.. doctest-remote-data::

    >>> print(len(resultset))
    9

If the row contains datasets, they are exposed by several retrieval methods:

.. remove skip once https://github.com/astropy/pyvo/issues/361 is fixed
.. doctest-skip::

    >>> row.getdataurl()
    'http://dc.g-vo.org/getproduct/califa/datadr3/V500/NGC0551.V500.rscube.fits'
    >>> type(row.getdataset())
    <class 'urllib3.response.HTTPResponse'>

Returning the access url or the a file-like object to further work on.

As with general numpy arrays, accessing individual columns via names gives an
array of all of their values:

.. doctest-remote-data::

    >>> column = resultset['obs_id']

whereas integers retrieve rows:

.. doctest-remote-data::

    >>> row = resultset[0]

and both combined gives a single value:

.. doctest-remote-data::

    >>> value = resultset['obs_id', 0]

Row objects may expose certain key columns as properties. See the corresponding
API spec listed below for details.

* :py:class:`pyvo.dal.sia.SIARecord`
* :py:class:`pyvo.dal.ssa.SSARecord`
* :py:class:`pyvo.dal.scs.SCSRecord`
* :py:class:`pyvo.dal.sla.SLARecord`

Convenience methods are available to transform the results into
:py:class:`astropy.table.Table` or :py:class:`astropy.table.QTable` (values
as quantities):

.. doctest-remote-data::

    >>> astropy_table = resultset.to_table()
    >>> astropy_qtable = resultset.to_qtable()

Datalink
--------

Datalink lets operators associate multiple artifacts with a dataset.
Examples include linking raw data, applicable or applied calibration
data, derived datasets such as extracted sources, extra documentation,
and much more.

Datalink can both be used on result rows of queries and from
datalink-valued URLs.  The typical use is to call ``iter_datalinks()``
on some DAL result; this will iterate over all datalinks pyVO finds in a
document and yields :py:class:`pyvo.dal.adhoc.DatalinkResults` instances
for them.  In those, you can, for instance, pick out items by semantics,
where the standard vocabulary datalink documents use is documented at
http://www.ivoa.net/rdf/datalink/core.  Here is how to find URLs for
previews:

.. doctest-remote-data::
    >>> rows = vo.dal.TAPService("http://dc.g-vo.org/tap"
    ... ).run_sync("select top 5 * from califadr3.cubes order by califaid")
    >>> for dl in rows.iter_datalinks(preserve_order=True):  # doctest: +IGNORE_WARNINGS
    ...     print(next(dl.bysemantics("#preview"))["access_url"])
    http://dc.g-vo.org/getproduct/califa/datadr3/V1200/IC5376.V1200.rscube.fits?preview=True
    http://dc.g-vo.org/getproduct/califa/datadr3/COMB/IC5376.COMB.rscube.fits?preview=True
    http://dc.g-vo.org/getproduct/califa/datadr3/V500/IC5376.V500.rscube.fits?preview=True
    http://dc.g-vo.org/getproduct/califa/datadr3/COMB/UGC00005.COMB.rscube.fits?preview=True
    http://dc.g-vo.org/getproduct/califa/datadr3/V1200/UGC00005.V1200.rscube.fits?preview=True

The call to ``next`` in this example picks the first link marked
*preview*.  For previews, this may be enough, but in general there can
be multiple links for a given semantics value for one dataset.

It is sometimes useful to go back to the original row the datalink was
generated from; use the ``original_row`` attribute for that (which may
be None if pyvo does not know what row the datalink came from):

.. doctest-remote-data::
  >>> dl.original_row["obs_title"]
  'CALIFA V1200 UGC00005'

Consider ``original_row`` read only.  We do not define what happens when
you modify it.

Rows from tables supporting datalink also have a ``getdatalink()``
method that returns a ``DatalinkResults`` instance.  In general, this is
less flexible than using ``iter_datalinks``, and it may also cause more
network traffic because each such call will cause a network request.

When one has a link to a Datalink document – for instance, from an
obscore or SIAP service, where the media type is
application/x-votable;content=datalink –, one can build a
DatalinkResults using
:py:meth:`~pyvo.dal.adhoc.DatalinkResults.from_result_url`:

.. doctest-remote-data::

    >>> from pyvo.dal.adhoc import DatalinkResults
    >>> # In this example you know the URL from somewhere
    >>> url = 'https://ws.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/datalink?ID=ivo%3A%2F%2Fcadc.nrc.ca%2FHSTHLA%3Fhst_12477_28_acs_wfc_f606w_01%2Fhst_12477_28_acs_wfc_f606w_01_drz'
    >>> datalink = DatalinkResults.from_result_url(url)
    >>> next(datalink.bysemantics("#this")).content_type
    'application/fits'


Server-side processing
----------------------
Some services support the server-side processing of record datasets.
This includes spatial cutouts for 2d-images, reducing of spectra to a certain
waveband range, and many more depending on the service.

Generic Datalink Processing Service
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Generic access to processing services is provided through the datalink
interface.

.. remove skip once https://github.com/astropy/pyvo/issues/361 is fixed
.. doctest-skip::

    >>> datalink_proc = next(row.getdatalink().bysemantics('#proc'))

.. note::
  Most datalink documents only have one processing service per dataset,
  which is why there is the ``get_first_proc`` shortcut mentioned below.


The returned object lets you access the available input parameters which you
can pass as keywords to the ``process`` method.

.. remove skip once https://github.com/astropy/pyvo/issues/361 is fixed
.. doctest-skip::

  >>> datalink_proc = row.getdatalink().get_first_proc()
  >>> print(datalink_proc.input_params)


For more details about this have a look at
:py:class:`astropy.io.votable.tree.Param`.

Calling the method will return a file-like object on success.

.. remove skip once https://github.com/astropy/pyvo/issues/361 is fixed
.. doctest-skip::

    >>> print(datalink_proc)
    >>> fobj = datalink.process(circle=(1, 1, 1))


SODA
^^^^
SODA is a service with predefined parameters, available on row-level through
:py:meth:`pyvo.dal.adhoc.SodaRecordMixin.processed` which exposes a set of
parameters which are dependent on the type of service.

- ``circle`` -- a sequence (degrees) or :py:class:`astropy.units.Quantity` of
  longitude, latitude and radius
- ``range`` -- a sequence (degrees) or :py:class:`astropy.units.Quantity` of
  two longitude values and two latitude values describing a rectangle.
- ``polygon`` -- multiple pairs of longitude and latitude points
- ``band`` -- a sequence of two values (meters) or
  :py:class:`astropy.units.Quantity` with two bandwidth values. The right sort
  order will be ensured if converting from frequency to wavelength.


Interoperabillity over SAMP
---------------------------
Tables and datasets can be send to other astronomical applications, providing
they have support for SAMP (Simple Application Messaging Protocol).

You can either broadcast whole tables by calling ``broadcast_samp`` on the
resultset or a single product (image, spectrum) by calling this method on the
SIA or SSA record.

.. note::
  Don't forget to start the application and make sure there is a running SAMP
  Hub.

Underlying data structures
--------------------------
PyVO also allows access to underlying data structures.

The astropy data classes :py:class:`astropy.table.Table` and
:py:class:`astropy.table.QTable` are accessible with the
method :py:meth:`pyvo.dal.DALResults.to_table` and
:py:meth:`pyvo.dal.DALResults.to_qtable`, following astropy naming
conventions.

If you want to work with the XML data structures
:py:class:`astropy.io.votable.tree.VOTableFile` or
:py:class:`astropy.io.votable.tree.TableElement`, they are accessible by the
attributes :py:attr:`pyvo.dal.DALResults.resultstable` and
:py:attr:`pyvo.dal.DALResults.votable`, respectively.

Reference/API
=============

.. automodapi:: pyvo.dal
.. automodapi:: pyvo.dal.adhoc